Communications
J . Org. Chem., Vol. 63, No. 20, 1998 6783
Ta ble 2. P r ep a r a tion of Hom op r op a r gylic Alcoh ols (10a -f) fr om 2-Meth ylen eoxeta n es
entry
lactone 7
isolated yield 9, %
R4
isolated yield 10, %
a
R, R1 ) H; R2, R3 ) Ph, CH2CHCH2
74
60
60
76
H
H
H
H
85
48
86
88
87
74
b
c
d
e
f
R, R1 ) CH3; R2 ) H; R3)(CH2)3OSit-BuPh2
R, R1 ) (CH2)5; R2,R3 ) H,CH3
R, R1 ) H; R2, R3 ) Ph,CH3
7d
(CH3)3Sia
b
7d
CH3
a
b
Electrophile ) (CH3)3SiCl. Electrophile ) CH3I.
F igu r e 1. Common approaches to homopropargylic alcohols 1.
F igu r e 2.
The conversion of 7 to 10 represents a novel protocol for
the preparation of homopropargylic alcohols. The two most
widely used approaches to 1 are illustrated in Figure 1. One
strategy exploits propargylic anion equivalents 13 in reac-
tions with carbonyl compounds. Historically, this approach
has been hampered by problems of regioselection with many
propargyl anion equivalents giving mixtures of 1 and allenyl
alcohols.13 However, some of the more recent methodologies
centered on 13 are regiospecific and high yielding, although
their syntheses are not always trivial.14-26 With substituted
propargyl anions (13 R2 and/or R3 * H) that produce
diastereomeric alcohols (1 R4 * R5),18-26 a major drawback
is that, with one exception,24 diastereoselectivities tend to
be quite variable. More importantly, of these examples only
Marshall et al. examine the issue of the enantioselectivity
of the addition when the propargyl anion equivalent is
chiral.25,26 It should be noted that efficient asymmetric
syntheses of 1 from unsubstituted 13 (R1, R2, R3 ) H) are
available.27-30 The other widely used approach to 1 involves
the reaction of acetylenic anions 14 with epoxides.31-34 The
regioselectivity of the ring-opening reaction can be problem-
atic, but the variety of asymmetric epoxidation procedures
available35-37 makes this an attractive protocol. Obviously,
the versatility of any synthetic methodology must be evalu-
ated by the accessibility of key intermediates.
In evaluating the utility of 2-methyleneoxetanes as pre-
cursors for 1, it is important to recognize that â-hydroxy
acids are common precursors for â-lactones. When combined
with the many approaches,38,39 both racemic and enantiose-
lective, to â-hydroxy acids, the protocol outlined in this
communication represents a fundamentally different way of
considering the retrosynthesis of homopropargylic alcohols,
as shown in Figure 2. The retrons are an alkyl halide 15, a
"C2-" synthon 16 and a â-hydroxy acid 17.40
In conclusion, the one-step conversion of 2-methyleneoxe-
tanes to homopropargylic alcohols is an unusual, useful, and
largely unprecedented reaction. Further, the conversion
represents a fundamentally new approach to the preparation
of homopropargylic alcohols.
Ack n ow led gm en t. Support by donors of the Petroleum
Research Fund, administered by the American Chemical
Society, and by the University of Connecticut Research
Foundation is gratefully acknowledged. A.R.H. thanks the
NSF for a CAREER Award. We thank David Galluzzo for
the preparation of 2-methyleneoxetane 9c.
(12) Yang, H. W.; Romo, D. J . Org. Chem. 1997, 62, 4-5.
(13) Yamamoto, H. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 81-98.
(14) Burns, M. R.; Coward, J . K. J . Org. Chem. 1993, 58, 528-532.
(15) Yanagisawa, A.; Habaue, S.; Yamamoto, H. Tetrahedron 1992, 48,
1969-1980.
Su p p or tin g In for m a tion Ava ila ble: Experimental proce-
dures and characterization data for all new compounds, as well
as proton NMR's for compounds 7b, 9a ,b, 10a -f (16 pages).
(16) Dabdoub, M.; Rotta, J . C. G. Synlett 1996, 526-528.
(17) Brown, H. C.; Khire, U. R.; Narla, G.; Racherla, U. S. J . Org. Chem.
1995, 60, 544-549.
J O9816360
(18) Tamaru, Y.; Goto, S.; Tanaka, A.; Shimizu, M.; Kimura, M. Angew.
Chem., Int. Ed. Engl. 1996, 35, 878-880.
(34) Alkylation of Alkynyl Carbanions; Garratt, P. J ., Ed.; Pergamon
Press: Oxford, 1991; Vol. 3.
(19) Carrie, D.; Carboni, B.; Vaultier, M. Tetrahedron Lett. 1995, 36,
8209-8212.
(35) Katsuki, T.; Martin, V. S. In Organic Reactions; J ohn Wiley and
Sons: New York, 1996; Vol. 48, pp 1-299.
(36) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189-214.
(37) J acobsen, E. N. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.;
VCH: New York, 1993; pp 159-202.
(38) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357-389.
(39) Klabunovskii, E. I. Russ. Chem. Rev. 1996, 65, 329-344.
(40) Obviously, an alternative retron would be a â-lactone. Further, there
are several syntheses of â-lactones that are essentially one step (refs 41-
47). However, from a conceptual standpoint we feel that it is easier to
visualize what the requisite â-hydroxy acid would be when considering the
desired homopropargylic alcohol. At that stage it would certainly be worth
evaluating one-step approaches to the corresponding â-lactone.
(41) Yang, H. W.; Zhou, C.; Romo, D. Tetrahedron 1997, 53, 16471-
16488.
(20) Nakagawa, T.; Kasatkin, A.; Sato, F. Tetrahedron Lett. 1995, 36,
3207-3210.
(21) Shinokubo, H.; Miki, H.; Yokoo, T.; Oshima, K.; Utimoto, K.
Tetrahedron 1995, 51, 11681-11692.
(22) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett.
1992, 33, 3769-3772.
(23) Danheiser, R. L.; Carini, D. J .; Kwasigroch, C. A. J . Org. Chem. 1986,
51, 3870-3878.
(24) Harada, T.; Katsuhira, T.; Osada, A.; Iwazaki, K.; Maejima, K.; Oku,
A. J . Am. Chem. Soc. 1996, 118, 11377-11390.
(25) Marshall, J . A.; Palovich, M. R. J . Org. Chem. 1997, 62, 6001-6005.
(26) Marshall, J . A.; Wang, X.-j. J . Org. Chem. 1992, 57, 1242-1252.
(27) Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; J ung, W.-H. Synlett 1997, 889-
890.
(28) Keck, G. E.; Krishnamurthy, D.; Chen, X. Tetrahedron Lett. 1994,
35, 8323-8324.
(42) Wedler, C.; Schick, H. Org. Synth. 1997, 75, 116-123.
(43) Dymock, B. W.; Kocienski, P. J .; Pons, J .-M. J . Chem. Soc. Chem.
Commun. 1996, 1053-1054.
(29) Corey, E. J .; Yu, C.-M.; Lee, D.-H. J . Am. Chem. Soc. 1990, 112,
878-879.
(44) Arrastia, I.; Lecea, B.; Cossio, F. P. Tetrahedron Lett. 1996, 37, 245-
248.
(30) Ikeda, N.; Arai, I.; Yamamoto, H. J . Am. Chem. Soc. 1986, 108, 483-
486.
(31) Marko, I. E.; Dobbs, A. P.; Scheirmann, V.; Chelle, F.; Bayston, D.
J . Tetrahedron Lett. 1997, 38, 2899-2902.
(32) Lipshutz, B. H.; Tirado, R. J . Org. Chem. 1994, 59, 8307-8311.
(33) Tirado, R.; Prieto, J . A. J . Org. Chem. 1993, 58, 5666-5673.
(45) Concepcion, A. B.; Maruoka, K.; Yamamoto, H. Tetrahedron 1995,
51, 4011-4020.
(46) Tamai, Y.; Someya, M.; Fukumoto, J .; Miyano, S. J . Chem. Soc.,
Perkin Trans. 1 1994, 1549-1550.
(47) Danheiser, R. L.; Nowick, J . S. J . Org. Chem. 1991, 56, 1176-1185.