Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Inesi, V. Mucciante and L. Rossi, J. Org. Chem. 1998, 63
monoxide under mild conditions, affording water and KHSO4 as
the only reaction by-products. This process is catalysed by the
commercially available complex [Rh(μ-Cl)(COD)]2 in the
1337−1338; d) W. D. McGhee, D. P. RiDleOyI,: 1M0..10E3.V9Ci/eCwh6rAiCrstCtic0lae9nO1dn3l3inKDe.
M. Christ, Organometallics 1993, 12, 1429−1433; e) R. N.
Salvatore, J. A. Ledger and K. W. Jung, Tetrahedron Lett.
2001, 42, 6023−6025.
presence of Oxone. This methodology shows a good tolerance
to several functional groups and is compatible with primary
and secondary alcohols. Theoretical and experimental data
suggest that Oxone plays a dual role as base and oxidant, thus
allowing for initial oxidation of the Rh(I) pre-catalyst to a Rh(III)
species—this step being essential to achieve substrate
activation. Remarkably, this transformation requires previous
coordination of the alcohol because its deprotonation and the
7
8
a) M. Abla, J. C. Choi and T. Sakakura, Chem. Commun. 2001,
2238−2239; b) M. Abla, J. C. Choi and T. Sakakura, Green
Chem. 2004, 6, 524−525; c) S. L. Peterson, S. M. Stucka and
C. J. Dinsmore, Org. Lett. 2010, 12, 1340−1343; d) A. Julián,
V. Polo, E. A. Jaseer, F. J. Fernández-Alvarez and L. A. Oro,
ChemCatChem 2015,
carbamates).
7, 3895–3902 (preparation of silyl
a) B. Gabriele, G. Salerno, R. Mancuso and M. Costa, J. Org.
Chem. 2004, 69, 4741–4750; b) F. Shi, Y. Deng, T. SiMa and
H. Yang, J. Catal. 2001, 203, 525–528; c) A. K. Ghosh and M.
Brindisi, J. Med. Chem. 2015, 58, 2895−2940; d) S. Fukuoka,
M. Chono and M. Kohno, J. Org. Chem. 1984, 49, 1458–1460;
e) H. Alper and F. W. Hartstock, J. Chem. Soc., Chem.
Commun., 1985, 1141–1142; f) S. Fukuoka, M. Chono and
Masashi Kohno, J. Chem. Soc., Chem. Commun., 1984, 399–
400; g) B. Gabriele, R. Mancuso, G. Salerno and M. Costa,
Top. Organomet. Chem. 2006, 18, 239–271.
oxidation of the metal centre occur by
mechanism.
a concerted
Acknowledgements
This work was supported by the Spanish Ministry of Economy
and Competitiveness (MINECO/FEDER) (CONSOLIDER INGENIO
CSD2009-0050, CTQ2013-42532-P and CTQ2015-67366-P
projects) and the DGA/FSE-E07. The support from KFUPM-
University of Zaragoza research agreement and the Centre of
Research Excellence in Petroleum Refining & KFUPM is
gratefully acknowledged. V. P. acknowledges the support of
BIFI-ZCAM. J. M. thanks the support from the Ministry of
Education Culture and Sports (FPU14/06003).
9
F. Shi and Y. Deng, Chem. Commun., 2001, 443–444.
10 a) K. Orito, M. Miyazawa, T. Nakamura, A. Horibata, H.
Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, T. Yamazaki,
M. Tokuda, J. Org. Chem. 2006, 71, 5951–5958.
11 b) Z.-H. Guan, H. Lei, M. Chen, Z.-H. Ren, Y. Bai and Y.-Y.
Wanga, Adv. Synth. Catal. 2012, 354, 489–496.
12 L. Rena and N. Jiao Chem. Commun., 2014, 50, 3706–3709.
13 a) J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke,
Principles and Applications of Organotransition Metal
Chemistry; University Science Books: Mill Valley, CA, 1978; b)
Hartwig, J. F.; Organotransition metal chemistry-from
bonding to catalysis. University Science Books. 2009, 753
,
Notes and references
757–578; c) F. J. Fernández-Alvarez, M. Iglesias, L. A. Oro and
V. Passarelli, in Comprehensive Inorganic Chemistry II, ed. J.
Reedijk and K. Poeppelmeier, Vol 8. Oxford: Elsevier; 2013. p.
399–432; d) Z.-H. Guan, Z.-H. Ren, S. M Spinella, S. Yu, Y.-M.
Liang and X. Zhang, J. Am. Chem. Soc. 2009, 131, 729–733; e)
R. Lang, J. Wu, L. Shi, C. Xi and F. Li, Chem. Commun., 2011,
47, 12553–12555; B. Liu, F. Hu, and B.-F. Shi, ACSCatal. 2015,
‡ The use of 3-chloroperoxybenzoic acid as oxidant with or
without an external base (K2SO4 or DMAP) fails to afford the
corresponding carbamates, which suggests that oxidant and
base act according to a concerted mechanism.
§ Alternative mechanisms where substrate activation precedes
Rh(I)→Rh(III) oxidation by Oxone or Rh(I)→Rh(III) oxidation by
Oxone occurs without substrate coordination show higher
activation energies (see ESI).
5
, 1863−1881; f) A. Iturmendi, P. J. Sanz Miguel, S. A.
Popoola, A. A. Al-Saadi, M. Iglesias and L. A. Oro, Dalton
Trans. 2016, 45, 16955–16965.
1
A. K. Ghosh and M. Brindisi, J. Med. Chem. 2015, 58,
14 For computational studies see: a) I. Funes-Ardoiz and F.
Maseras, Angew. Chem. Int. Ed. 2016, 55, 2764–2767; b) L.
Xu, Q. Zhu, G. Huang, B. Cheng and Y. Xia, J. Org. Chem.
2012, 77, 3017–3024; c) N. Quiñones, A. Seoane, R. García-
2895−2940.
2
for examples see: a) O. Dangles, F. Guibd and G. Balavoine, J.
Org. Chem. 1987, 52, 4984–4993; b) A. Merzouk, F. Guibé
and A. Loffet Tetrahedron Lett. 1992, 33, 477–480; c) G.
Hancock, I.J. Galpin, B.A. Morgan, 1982, 23, 249–252.
Fandiño, J. L. Mascareñas and M. Gulías, Chem. Sci. 2013, 4,
2874–2879; d) D. L. Davies, C. E. Ellul, S. A. Macgregor and C.
L. McMullin, J. Am. Chem. Soc. 2015, 137, 9659–9669; d) J.
Jiang, R. Ramozzi and K. Morokuma, Chem. Eur. J. 2015, 21
11158–11164.
3
For examples see: a) T. A. Unger in Pesticides Synthesis Book,
Ed. W. Andrew, Noyes Publications, New Jersey, 1996; b) H.
Babad and A. G. Zeiler, Chem. Rev. 1973, 73, 75–91; c) S. M.
Rahmathullah, J. E. Hall, B. C. Bender, D. R. McCurdy, R. R.
,
15 For experimental studies see: a) L. Li, W. W. Brennessel and
W. D. Jones, Organometallics 2009, 28, 3492–3500; b) N.
Wang, B. Li, H. Song, S. Xu and B. Wang, Chem. Eur. J. 2013,
19, 358–364.
Tidwell and D. W. J. Boykin, Med. Chem. 1999, 42
,
3994−4000; d) N. A. Roberts, J. A. Martin, D. Kinchington, A.
V. Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin, B. K.
Handa, J. Kay, A. Krohn, R. W. Lambert, J. H. Merrett, J. S.
Mills, K. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G.
J. Thomas and P. J. Machin, Science 1990, 248, 358−361; e)
H. Eckert and B. Forster, Angew. Chem., Int. Ed. Engl. 1987,
26, 894−895.
16 B. Liu, F. Hu and B.-F. Shi, ACS Catal. 2015, 5, 1863−1881.
17 a) Z.-H. Guan, Z.-H. Ren, S. M. Spinella, S. Yu and Y.-M. Liang,
Zhang, X. J. Am. Chem. Soc. 2009, 131, 729−733; b) R. Lang, J.
L. Wu, L. J. Shi, C. G. Xia, and F. W. Li, Chem. Commun. 2011,
47, 12553−12555.
4
5
6
E. F. V. Scriven and K. Turnbull, Chem. Rev. 1988, 88,
18 D. N. Lawson and G. Wilkinson, J. Chem. Soc. 1965, 1900–
1907.
19 a) E. P. Bulman Page and B. R. Buckley in Mechanisms in
Homogeneous and Heterogeneous Epoxidation Catalysis, Ed.:
S. T. Oyama, Elsevier, Oxford, 2008, pp. 177–217; b) B. M.
Trost, R. Braslau, J. Org. Chem., 1988, 53, 532–537.
297−368.
G. Raspoet and M. T. Nguyen J. Org. Chem. 1998, 63, 6878–
6885.
a) M. Yoshida, Na. Hara and S. Okuyama, Chem. Commun.,
2000, 151–152; b) T. Tsuda, K. Watanabe, K. Miyata, H.
Yamamoto and T. Inorg. Chem. 1981, 20, 2728−2730; c) A.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins