8250 J. Phys. Chem. A, Vol. 102, No. 43, 1998
Brynda et al.
the barrier between J and L is drastically dependent upon the
orientation of the phenyl ring C(19)-C(24). The comparison
between the curves a and d of Figure 5 and that of Figure 7
suggests that after the homolytic scission of the P-H bond a
slight reorientation of the phenyl ring increases the barrier
between configuration L and J.
Acknowledgment. We thank the Swiss National Science
Foundation for financial support.
Supporting Information Available: Tables of atomic
coordinates, isotropic and anisotropic displacement parameters,
and bond lengths and angles together with k and P values used
for the EPR spectra simulations; EPR spectra obtained at 300
K with a crystal of 2 and D-2 and at 77 K with a crystal of
D-2; angular variation of the EPR signals (300 K, crystal of 2);
experimental 1/T-dependence of the exchange constants for R2
(11 pages). Ordering and access information is given on any
current masthead page.
Figure 7. Schematic representation of the potential energy variation
of R2 as a function of the C(12)C(9)PH torsion angle. ∆EJL ) 2.46
kcal‚mol-1, ∆EJK ) 2.37 kcal‚mol-1, ∆EKL ) 2.74 kcal‚mol-1, EK
-
EJ = 0 kcal‚mol-1, EL - EK ) 0.5 kcal‚mol-1
.
phorus 3p orbital as given by the two 31P-T| principal axes:
31P-T|a and 31P-T|b are almost perpendicular to the planes
C(8a)C(9)P and C(12)C(9)P, respectively, and imply that R2
adopts the two configurations marked J and K in Figure 6b. In
the radical, therefore, at 77 K the phosphinyl hydrogen atom
never occupies the position associated with that of the atom H3
(Figure 6a), which is the very hydrogen characterized by a small
occupation parameter in the undamaged phosphine at 200 K
(see crystal structure).
The fact that the position corresponding to staggered P-D
and C(9)-C(9a) bonds (configuration L) is practically unoc-
cupied at 77 K is obviously due to the presence of the phenyl
ring bound to the C(12) carbon. The orientation of this ring
increases the repulsion between the phosphinyl hydrogen H(3)
and the hydrogen bound to C(24), and this interaction certainly
destabilizes the configuration L (Figure 6b).
References and Notes
(1) (a) Oki, M. Acc. Chem. Res. 1990, 23, 351, (b) Oki, M.; Matsusue,
M.; Akinaga, T.; Matsumoto, Y.; Toyota, S. Bull. Chem. Soc. Jpn. 1994,
67, 2831.
(2) Ramakrishna, G.; Jouaiti, A.; Geoffroy, M.; Bernardinelli, G. J.
Phys. Chem. 1996, 100, 1086.
(3) Nakadaira, Y.; Sato, R.; Sakurai, H. Chem. Lett. 1985, 643.
(4) Kabalka, G. W.; Pagni, R. M. J. Org. Chem. 1981, 46, 1513.
(5) Blanc, E.; Schwartzenbach, D.; Flack, H. D. J. Appl. Crystallogr.
1991, 24, 1035.
(6) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.;
Declercq, J.-P.; Woolfson, M. M. A System of Computer Programs for the
Automatic Solution of Crystal Structures from X-Ray Diffraction Data;
Universities of York, England, and Louvain-la-Neuve, Belgium, 1987.
(7) Hall, S.R.; Flack, H. D.; Stewart, J. M. Eds XTAL3.2 User’s Manual;
Universities of Western Australia and Maryland, 1992.
As shown in Table 4, the configuration L begins to be
populated above 100 K, but it immediately exchanges with
configuration J, whereas its exchange with configuration K is
appreciable only above 130 K. Exchange between configura-
tions J and K starts at 110 K.
(8) Johnson, C. K. ORTEP II; Report ORNL-5138; Oak Ridge National
Laboratory: Oak Ridge, TN, 1976.
(9) Bernardinelli, G; Flack, H. D. Acta Crystallogr. 1985, A41, 500.
(10) (a) Hayes, R. G.; Steible, D.; Tolles, W. M.; Hunt, J. J. Chem.
Phys. 1970, 53, 4466. (b) Benetis, N. P.; Sjo¨quist, L.; Lund, A.; Maruani,
J. J. Magn. Reson. 1991, 95, 523, (c) Heinzer, J. Mol. Phys. 1971, 22, 167.
(d) Bogan, C. M.; Kispert, L. D. J. Chem. Phys. 1972, 57, 3109.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. V.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Ciolowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Reploges, E. S.; Gomperts R.; Martin R. L.;
Fox D. J.; Binkley, J. S.; Defrees D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. Gaussian 94, Revision B.1; Gaussian
Inc.: Pittsburgh, PA; 1995.
All the parameters measured from the temperature depen-
dence of the spectra (population of the sites, correlation times
-1
ij
k
, rotation barriers) indicate that, in contrast to R1, the three
potential wells of R2 are not identical. The variations of the
rate constants with 1/T show, however, that, in the approxima-
tion of the Arrhenius law, the activation energies remain very
close to each another and are comprised between 2 and 3 kcal
mol-1. A sketch of the principal properties of the potential
profile is shown in Figure 7.
The DFT calculated curves visualize some important effects
of the hydrocarbon framework on the rotation of the P-H bond
around the C(9)-P bond. As expected, passing from the
barrelenyl to the triptycyl increases the barrier (interaction with
the three benzene protons in â position to C(9)) and using the
crystallographic coordinates for R2′ leave the two potential wells
corresponding to configuration J and K very similar whereas
(12) Wesemann, J.; Jones, P. J.; Schomburg, D.; Heuer, L.; Schmutzler,
R. Chem. Ber. 1992, 125, 2187.
(13) The 31P hyperfine couplings obtained at 300 K are equal to 23,
409, 413 MHz and those measured at 77 K are equal to 4, 74, 848 MHz.
Owing to improvement in the precision of our measurements (better
estimation of the temperature gradient, more accurate determination of the
tensor elements), all the experimental points of the curve ln τ-1 ) f(1/T)
are located on a single line and correspond to an energy barrier equal to
2.75 kcal‚mol-1 (previous results: 3.2 and 1.6 kcal‚mol-1).
(14) Bhat, S. N.;. Berclaz, T.; Jouaiti, A.; Geoffroy, M. HelV. Chim.
Acta 1994, 77, 371.