Organic Letters
Letter
8090. (b) Salamone, M.; Bietti, M. Tuning Reactivity and Selectivity
in Hydrogen Atom Transfer from Aliphatic C-H Bonds to Alkoxyl
Radicals: Role of Structural and Medium Effects. Acc. Chem. Res.
2015, 48, 2895−2903.
omethoxylation of arenes and heteroarenes. Chem. Sci. 2019, 10,
3217−3222.
(11) For selected examples, see: (a) Jia, K.; Zhang, F.; Huang, H.;
Chen, Y. Visible-Light-Induced Alkoxyl Radical Generation Enables
Selective C(sp3)-C(sp3) Bond Cleavage and Functionalizations. J. Am.
Chem. Soc. 2016, 138, 1514−1517. (b) Yayla, H. G.; Wang, H.;
Tarantino, K. T.; Orbe, H. S.; Knowles, R. R. Catalytic Ring-Opening
of Cyclic Alcohols Enabled by PCET Activation of Strong O-H
Bonds. J. Am. Chem. Soc. 2016, 138, 10794−10797. (c) Guo, J.-J.; Hu,
A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C-C Bond
Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride
Complex. Angew. Chem., Int. Ed. 2016, 55, 15319−15322. (d) Wu, X.;
Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Tertiary-Alcohol-
Directed Functionalization of Remote C(sp3)-H Bonds by Sequential
Hydrogen Atom and Heteroaryl Migrations. Angew. Chem., Int. Ed.
(2) (a) Hartung, J. Stereoselective Construction of the Tetrahy-
drofuran Nucleus by Alkoxyl Radical Cyclizations. Eur. J. Org. Chem.
̌
2001, 2001, 619−632. (b) Hartung, J.; Gottwald, T.; Spehar, K.
Selectivity in the Chemistry of Oxygen-Centered Radicals − The
Formation of Carbon-Oxygen Bonds. Synthesis 2002, 1469−1498.
(3) (a) Murakami, M.; Ishida, N. β-Scission of Alkoxy Radicals in
Synthetic Transformations. Chem. Lett. 2017, 46, 1692−1700.
(b) Wu, X.; Zhu, C. Recent Advances in Radical-Mediated C-C
Bond Fragmentation of Non-Strained Molecules. Chin. J. Chem. 2019,
37, 171−182.
(4) For selected reviews, see: (a) Ren, R.; Zhu, C. Radical-Mediated
Ring-Opening Functionalization of Cyclobutanols: A Shortcut to γ-
Substituted Ketones. Synlett 2016, 27, 1139−1144. (b) Wu, X.; Zhu,
C. Recent Advances in Ring-Opening Functionalization of Cyclo-
alkanols by C-C σ-Bond Cleavage. Chem. Rec. 2018, 18, 587−598.
(5) (a) Jia, K.; Chen, Y. Visible-light-induced alkoxyl radical
generation for inert chemical bond cleavage/functionalization.
Chem. Commun. 2018, 54, 6105−6112. (b) Guo, J.-J.; Hu, A.; Zuo,
Z. Photocatalytic alkoxy radical-mediated transformations. Tetrahe-
dron Lett. 2018, 59, 2103−2111.
(6) DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D.
V.; Tudge, M. Late-Stage Functionalization of Biologically Active
Heterocycles Through Photoredox Catalysis. Angew. Chem., Int. Ed.
2014, 53, 4802−4806.
̈
2018, 57, 1640−1644. (e) Schwarz, J.; Konig, B. Visible-light
mediated C-C bond cleavage of 1,2-diols to carbonyls by cerium-
photocatalysis. Chem. Commun. 2019, 55, 486−488. (f) Li, G.-X.; Hu,
X.; He, G.; Chen, G. Photoredox-mediated remote C(sp3)-H
heteroarylation of free alcohols. Chem. Sci. 2019, 10, 688−693.
(12) For selected recent reviews, see: (a) Yan, M.; Kawamata, Y.;
Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000:
On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230−13319.
̈
(b) Wiebe, A.; Gieshoff, T.; Mohle, S.; Rodrigo, E.; Zirbes, M.;
Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem., Int. Ed.
̈
̈
2018, 57, 5594−5619. (c) Karkas, M. D. Electrochemical strategies
for C-H functionalization and C-N bond formation. Chem. Soc. Rev.
2018, 47, 5786−5865. (d) Moeller, K. D. Using Physical Organic
Chemistry To Shape the Course of Electrochemical Reactions. Chem.
Rev. 2018, 118, 4817−4833. (e) Tang, S.; Liu, Y.; Lei, A.
Electrochemical Oxidative Cross-coupling with Hydrogen Evolution:
A Green and Sustainable Way for Bond Formation. Chem. 2018, 4,
27−45.
(7) For selected examples, see: (a) Zhang, J.; Li, Y.; Zhang, F.; Hu,
C.; Chen, Y. Generation of Alkoxyl Radicals by Photoredox Catalysis
Enables Selective C(sp3)-H Functionalization under Mild Reaction
Conditions. Angew. Chem., Int. Ed. 2016, 55, 1872−1875. (b) Wang,
C.; Harms, K.; Meggers, E. Catalytic Asymmetric C(sp3)-H
Functionalization under Photoredox Conditions by Radical Trans-
location and Stereocontrolled Alkene Addition. Angew. Chem., Int. Ed.
2016, 55, 13495−13498. (c) Zhang, J.; Li, Y.; Xu, R.; Chen, Y.
Donor-Acceptor Complex Enables Alkoxyl Radical Generation for
Metal-Free C(sp3)-C(sp3) Cleavage and Allylation/Alkenylation.
Angew. Chem., Int. Ed. 2017, 56, 12619−12623.
(13) (a) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
Electrochemistry: Calling All Engineers. Angew. Chem., Int. Ed. 2018,
̈
57, 4149−4155. (b) Gutz, C.; Klockner, B.; Waldvogel, S. R.
Electrochemical Screening for Electroorganic Synthesis. Org. Process
Res. Dev. 2016, 20, 26−32.
̈
(14) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals:
Reactive Intermediates with Translational Potential. J. Am. Chem. Soc.
2016, 138, 12692−12714.
(8) For selected examples, see: (a) Quint, V.; Morlet-Savary, F.;
́
Lohier, J.-F.; Lalevee, J.; Gaumont, A.-C.; Lakhdar, S. Metal-Free,
Visible Light-Photocatalyzed Synthesis of Benzo[b]phosphole Oxides:
Synthetic and Mechanistic Investigations. J. Am. Chem. Soc. 2016, 138,
7436−7441. (b) Kim, I.; Min, M.; Kang, D.; Kim, K.; Hong, S. Direct
Phosphonation of Quinolinones and Coumarins Driven by the
Photochemical Activity of Substrates and Products. Org. Lett. 2017,
19, 1394−1397. (c) Jelier, B. J.; Tripet, P. F.; Pietrasiak, E.; Franzoni,
I.; Jeschke, G.; Togni, A. Radical Trifluoromethoxylation of Arenes
Triggered by a Visible-Light-Mediated N-O Bond Redox Fragmenta-
tion. Angew. Chem., Int. Ed. 2018, 57, 13784−13789. (d) Barthelemy,
A.-L.; Tuccio, B.; Magnier, E.; Dagousset, G. Alkoxyl Radicals
Generated under Photoredox Catalysis: A Strategy for anti-
Markovnikov Alkoxylation Reactions. Angew. Chem., Int. Ed. 2018,
57, 13790−13794. (e) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.;
Lee, H.; Baik, M.-H.; Hong, S. Visible-Light-Induced Pyridylation of
Remote C(sp3)-H Bonds by Radical Translocation of N-Alkoxypyr-
idinium Salts. Angew. Chem., Int. Ed. 2018, 57, 15517−15522. (f) Bao,
X.; Wang, Q.; Zhu, J. Dual Photoredox/Copper Catalysis for the
Remote C(sp3)-H Functionalization of Alcohols and Alkyl Halides by
N-Alkoxypyridinium Salts. Angew. Chem., Int. Ed. 2019, 58, 2139−
2143.
(15) For selected examples, see: (a) Dolson, M. G.; Swenton, J. S.
Product and Mechanistic Studies of the Anodic Oxidation of
Methoxylated Naphthalenes. The EECrCp Mechanism. J. Am. Chem.
Soc. 1981, 103, 2361. (b) Carreno, M. C.; Ribagorda, M. Anodic
̃
Oxidation of N-Protected 4-Methoxy Anilines: Improved Synthesis of
Quinone Imine Acetals. J. Org. Chem. 2000, 65, 1231−1234.
(c) Sumi, T.; Saitoh, T.; Natsui, K.; Yamamoto, T.; Atobe, M.;
Einaga, Y.; Nishiyama, S. Anodic Oxidation on a Boron-Doped
Diamond Electrode Mediated by Methoxy Radicals. Angew. Chem.,
Int. Ed. 2012, 51, 5443−5446. (d) Yajima, S.; Saitoh, T.; Kawa, K.;
Nakamura, K.; Nagase, H.; Einaga, Y.; Nishiyama, S. Asymmetric
Induction in cyclohexadienones carrying α-D-glucopyranosyl moiety.
Tetrahedron 2016, 72, 8428−8435.
(16) For a spiroketal formation, which is proposed to involve anodic
́
oxidation of alkoxides to form alkoxy radicals, see: Marko, I. E.
Electrochemical oxidative cyclisation of ω-hydroxy-tetrahydropyrans
to spiroketals. Tetrahedron Lett. 2000, 41, 4383−4387.
(17) For a recent review of deconstructive functionalization
processes, see: (a) Morcillo, S. P. Radical-promoted C-C bond
cleavage: a deconstructive approach for selective functionalization.
Angew. Chem., Int. Ed. 2019, 58, 14044. For examples of
deconstructive chlorination, see: (b) Fan, X.; Zhao, H.; Yu, J.; Bao,
X.; Zhu, C. Regiospecific synthesis of distally chlorinated ketones via
C-C bond cleavage of cycloalkanols. Org. Chem. Front. 2016, 3, 227−
232. (c) Huang, F.-Q.; Xie, J.; Sun, J.-G.; Wang, Y.-W.; Dong, X.; Qi,
L.-W.; Zhang, B. Regioselective Synthesis of Carbonyl-Containing
Alkyl Chlorides via Silver-Catalyzed Ring-Opening Chlorination of
Cycloalkanols. Org. Lett. 2016, 18, 684−687. (d) Huan, L.; Zhu, C.
(9) Zheng, W.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M.-Y.
Catalytic C-H Trifluoromethoxylation of Arenes and Heteroarenes.
Angew. Chem., Int. Ed. 2018, 57, 9645−9649.
(10) (a) Zheng, W.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai,
M.-Y. Redox-Active Reagents for Photocatalytic Generation of the
OCF3 Radical and (Hetero)Aryl C-H Trifluoromethoxylation. Angew.
Chem., Int. Ed. 2018, 57, 13795−13799. (b) Lee, J. W.; Zheng, W.;
Morales-Rivera, C.; Liu, P.; Ngai, M.-Y. Catalytic radical difluor-
E
Org. Lett. XXXX, XXX, XXX−XXX