Journal of the American Chemical Society
Page 4 of 5
(6) Hüttemann, M.; Pecina, P.; Rainbolt, M.; Sanderson, T. H.;
Kagan, V. E.; Samavati, L.; Doan, J. W.; Lee, I. Mitochondrion
2011, 11, 369-381.
decrease in O2 reduction current density stems from
leaching of the proton carrier from the lipid layer of the
HBM into bulk solution (Figure S5).
1
2
3
4
5
6
7
8
(7) Brändén, G.; Gennis, R. B.; Brzezinski, P. BBA-Bioenergetics
2006, 1757, 1052-1063.
In summary, we have developed the first photo-
responsive proton gate in a HBM and demonstrated its
application by successively turning off and back on pro-
ton transfer for use in a PCET reaction without concomi-
tant changes in solution pH. The photo-switch uses the
interconversion of the Z- or E-isomer, which allows a flip-
ping mechanism that, in turn, facilitates transmembrane
proton delivery. This matching of molecular to lipid
structure by modulating proton flux directly leads to the
on- and off-switching of the lipid-covered O2 reduction
catalyst. We envision that by delineating the effects of
proton transfer thermodynamics and kinetics, we can
further elucidate the reaction mechanism of PCET pro-
cesses. Further spatial regulation of this photo-responsive
proton gate in the bio-inspired HBM platform could per-
mit the development of more complex hybrid models for
future biophotonics, optoelectronics, molecular switches,
and memory elements.
(8) Hofacker, I.; Schulten, K. Proteins 1998, 30, 100-107.
(9) Kirchberg, K.; Michel, H.; Alexiev, U. BBA-Bioenergetics 2013,
1827, 276-284.
(10) Bento, I.; Silva, C.; Chen, Z.; Martins, L.; Lindley, P.; Soares, C.
BMC Struct. Biol. 2010, 10, 28.
9
(11) Silva, C. S.; Damas, J. M.; Chen, Z.; Brissos, V.; Martins, L. O.;
Soares, C. M.; Lindley, P. F.; Bento, I. Acta Crystallogr. D 2012,
68, 186-193.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363-390.
(13) Chidsey, C. E. D. Science 1991, 251, 919-922.
(14) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamen-
tals and Applications; Wiley: New York, 2000.
(15) Barile, C. J.; Tse, E. C. M.; Li, Y.; Sobyra, T. B.; Zimmerman, S.
C.; Hosseini, A.; Gewirth, A. A. Nat. Mater. 2014, 13, 619-623.
(16) Hosseini, A.; Barile, C. J.; Devadoss, A.; Eberspacher, T. A.;
Decreau, R. A.; Collman, J. P. J. Am. Chem. Soc. 2011, 133, 11100-
11102.
(17) Hosseini, A.; Collman, J. P.; Devadoss, A.; Williams, G. Y.; Ba-
rile, C. J.; Eberspacher, T. A. Langmuir 2010, 26, 17674-17678.
ASSOCIATED CONTENT
Supporting Information
(18) Schönfeld, P.; Schild, L.; Kunz, W. BBA-Bioenergetics 1989, 977,
266-272.
Experimental procedures, NMR spectra, and electro-
chemical data. The Supporting Information is available
free of charge on the ACS Publications website at
(19) McConnell, H. M.; Kornberg, R. D. Biochemistry 1971, 10, 1111-
1120.
(20) Stowell, M. H. B.; McPhillips, T. M.; Rees, D. C.; Soltis, S. M.;
Abresch, E.; Feher, G. Science 1997, 276, 812-816.
(21) Koçer, A.; Walko, M.; Meijberg, W.; Feringa, B. L. Science 2005,
309, 755-758.
AUTHOR INFORMATION
Corresponding Author
(22) Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S.-C.; Moore, A. L.;
Gust, D.; Moore, T. A. Nature 1997, 385, 239-241.
(23) Xie, X.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Nat. Chem.
2014, 6, 202-207.
* sczimmer@illinois.edu
* agewirth@illinois.edu
(24) Hall, D. G. In Boronic Acids; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, Germany, 2006, p 1-99.
Notes
(25) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422-
4437.
The authors declare no competing financial interest.
(26) Klajn, R. Chem. Soc. Rev. 2014, 43, 148-184.
ACKNOWLEDGMENT
(27) Xu, J.-F.; Chen, Y.-Z.; Wu, D.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-
Z. Angew. Chem. Int. Ed. 2013, 52, 9738-9742.
S.C.Z. acknowledges support of the National Science
Foundation (NSF CHE-1307404). E.C.M.T. acknowledg-
es a Croucher Foundation Scholarship. C.J.B. acknowl-
edges a National Science Foundation Graduate Re-
search Fellowship (NSF DGE-1144245) and a Springborn
Fellowship. We thank the US Department of Energy
(DEFG02-95ER46260) for support of this research.
(28) Yan, X.; Xu, J.-F.; Cook, T. R.; Huang, F.; Yang, Q.-Z.; Tung, C.-
H.; Stang, P. J. Proc. Natl. Acad. Sci. USA 2014, 111, 8717-8722.
(29) Wang, J.; Feringa, B. L. Science 2011, 331, 1429-1432.
(30) Kucharski, T. J.; Boulatov, R. J. Mater. Chem. 2011, 21, 8237-8255.
(31) Yang, Q.-Z.; Huang, Z.; Kucharski, T. J.; Khvostichenko, D.;
Chen, J.; Boulatov, R. Nat. Nano. 2009, 4, 302-306.
(32) Akbulatov, S.; Tian, Y.; Boulatov, R. J. Am. Chem. Soc. 2012, 134,
7620-7623.
REFERENCES
(33) Uno, B. E.; Gillis, E. P.; Burke, M. D. Tetrahedron 2009, 65, 3130-
3138.
(1) Chang, C. J.; Chang, M. C. Y.; Damrauer, N. H.; Nocera, D. G.
BBA-Bioenergetics 2004, 1655, 13-28.
(34) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716-6717.
(2) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent,
C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.;
Meyer, T. J. Chem. Rev. 2012, 112, 4016-4093.
(35) Disalvo, E. A.; Simon, S. A. Permeability and Stability of Lipid
Bilayers; Taylor & Francis: Boca Raton, FL, 1995.
(36) Kampf, J. P.; Cupp, D.; Kleinfeld, A. M. J. Biol. Chem. 2006, 281,
21566-21574.
(3) Mayer, J. M.; Rhile, I. J. BBA-Bioenergetics 2004, 1655, 51-58.
(4) Hammes-Schiffer, S. Acc. Chem. Res. 2009, 42, 1881-1889.
(5) Arnold, S. Mitochondrion 2012, 12, 46-56.
(37) Quick, M.; Berndt, F.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky,
A. A.; Knie, C.; Mahrwald, R.; Lenoir, D.; Ernsting, N. P.; Ko-
valenko, S. A. J. Phys. Chem. B 2014, 118, 1389-1402.
ACS Paragon Plus Environment