September 1998
SYNLETT
1021
References and Notes
9.
Other improved methods, see for example, (a) Danishefsky, S. J.;
1976
Kitahara, T.; McKee, R.; Schuda, P. F. J. Am. Chem. Soc.
6715. (b) Danishefsky, S. J.; Prisbylla, M.; Lipisko, B.
1980
, 98,
†
Present address: Graduate School of Pharmaceutical Sciences,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033.
Tetrahedron Lett.
Schiess, M. Helv. Chim. Acta
Nishihara, Y.; Akiba, K.-y. Tetrahedron Lett.
Katritzky, A. R.; Rachwal, S; Hitchins, G. J. Tetrahedron
1994
, 21, 805. (c) Seebach, D.; Betschart, C.;
1.
Selected examples using hydrazones as electrophiles or
equivalents are as follows. As far as we know, there have been no
examples of Lewis acid-mediated reactions of hydrazones with
nucleophiles. (a) Kodata, I.; Park, J.-Y.; Yamamoto, Y. J. Chem.
1984
, 67, 1593. (d) Wada, M.;
1984
, 25, 5405. (e)
1991
,
47, 2683. (f) Katritzky, A. R.; Lan, X. Chem. Soc. Rev.
, 363.
, 3643.
1987
1996
Soc., Chem. Commun.
J.; Raabe, G. Angew. Chem., Int. Ed. Engl.
Denmark, S. E.; Weber, T.; Piotrowski, D. W. J. Am. Chem. Soc.
, 841. (b) Enders, D.; Ward, D.; Adam,
1977
1996
10. Ojima I.; Inaba, S.; Yoshida, K. Tetrahedron Lett.
, 35, 981. (c)
11. (a) Guanti, G.; Narisano, E.; Banfi, L. Tetrahedron Lett.
, 28,
1987
, 109, 2224. (d) Enders, D.; Schubert, H.; Nubling, C. Angew.
4331. (b) Mukaiyama, T.; Kashiwagi, K.; Matsui, S. Chem. Lett.
1986
, 25, 1109. (e) Claremon, D. A.;
Chem., Int. Ed. Engl.
1989
, 1397. (c) Mukaiyama, T.; Akamatsu, H.; Han, J. S. Chem
1986
Lumma, P. K.; Phillips, B. T. J. Am. Chem. Soc.
(f) Takahashi, H.; Tomita, K.; Otomasu, H. J. Chem. Soc., Chem.
1979
, 108, 8265.
1990
Lett.
, 889. (d) Onaka, M.; Ohno, R.; Yanagiya, N.; Izumi, Y.
1993
Synlett
, 141. (e) Ishihara, K.; Hanaki, N.; Funahashi, M.;
Comm.
In
hydrogenation of acylhydrazones derived from ketones was
, 668.
1995
Miyata, M.; Yamamoto, H. Bull. Chem. Soc. Jpn.
, 68, 1721.
2.
a pioneering work, rhodium-catalyzed enantioselective
(f) Kobayashi, S.; Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya,
1995
I. Synlett
, 233.
1992
, 114,
reported. Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc.
6266.
12. These problems have recently been overcome by using three-
component coupling reactions of aldehydes, amines, and silyl
enolates using a lanthanide triflate as a catalyst. Kobayashi, S.;
1998
, 249.
3.
4.
Oyamada, H.; Kobayashi, S. Synlett
(a) Thom, K. F., US Patent 3615169 (1971); CA
(b) Kobayashi, S.; Hachiya, I.; Araki M.; Ishitani, H. Tetrahedron
1993 1994
1972
, 76, 5436a.
1995
Araki, M.; Yasuda, M. Tetrahedron Lett.
, 36, 5773.
1991
13. Alexakis, A.; Lensen, N.; Mangeney, P. Synlett
, 625. Cf.
, 423. See also, Ref. 1
Lett.
, 34, 3755. (c) Kobayashi, S. Synlett
, 689.
1979
Seebach, D.; Wykypiel, W. Synthesis
5.
It has been shown that rare earth triflates are excellent catalysts for
the catalytic activation of imine and related compounds, while
most Lewis acids are decomposed or deactivated in the presence
of basic nitrogen atoms. For example, (a) Kobayashi, S.;
(c).
–1
1
14. 8: IR (neat) 1765, 1685, 1325 cm ; H NMR (CDCl ) δ 0.93 (dd,
3
6H, J = 6.4, 8.4 Hz), 1.26 (s, 3H), 1.42-1.51 (m, 1H), 1.49 (s, 3H),
1.56-1.72 (m, 2H), 3.92 (t, 1H, J = 6.6 Hz), 7.54 (d, 2H, J = 8.3
Hz), 7.75 (d, 2H, J = 8.1 Hz), 9.81 (s, 1H); C NMR (CDCl ) δ
17.1, 22.46, 22.51, 23.1, 25.8, 37.9, 50.6, 67.6, 125.50, 125.55,
125.60, 125.65, 127.6, 133.7, 150.7, 164.3, 176.5.
1998
Busujima, T.; Nagayama, S. J. Chem. Soc., Chem. Commun.
,
13
3
1997
19. (b) Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc.
10049. (c) Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani,
1997
, 119,
H. Chem. Lett.
1997
, 1039. (d) Kobayashi, S.; Ishitani, H.; Ueno,
, 115.
15. The structure was confirmed by X-ray analysis of the
corresponding N-benzoyl derivative.
M. Synlett
6.
We also found that ytterbium triflate [Yb(OTf)3] was effective for
the activation of the acylhydrazone, although the yield was ca.
10% lower than that using Sc(OTf)3 in a preliminary experiment.
–1
1
16. 10: Mp 114-115 °C. IR (neat) 1717 cm
; H NMR (CDCl ) δ
3
0.93 (d, 3H, J = 6.6 Hz), 0.96 (d, 3H, J = 6.6 Hz), 0.99 (s, 3H),
1.11 (s, 3H), 1.23-1.37 (m, 2H), 1.68-1.82 (m, 1H), 3.29 (dd, 1H, J
7.
8.
It is also known that the imines derived from α,β-unsaturated
aldehydes are often difficult to prepare due to their instability.
13
= 4.6, 9.0 Hz), 3.72 (br, 1H), 8.09 (brs, 1H); C NMR (CDCl ) δ
3
16.5, 21.3, 22.1, 23.5, 25.1, 36.8, 42.5, 66.9, 182.4; HRMS calcd
(a) Kleinman, E. F. In Comprehensive Organic Synthesis; Trost, B.
M., Ed.; Chapter 4.1. Vol. 2, Pergamon Press, Oxford, 1991, 893.
(b) Tramontini, M.; Angiolini, L. "Mannich Bases, Chemistry and
Uses," CRC Press, Boca Raton 1994, p. 106.
for C H N O (M+) 170.1419, found 170.1423.
9
18 2
17. Cf. Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle, W. C. J.
1997
Am. Chem. Soc.
, 119, 7159.