5812 J. Am. Chem. Soc., Vol. 122, No. 24, 2000
Jime´nez et al.
receptor recognition processes, to the extent that their interaction
with the complementary receptor groups determines biological
specificity. Their three-dimensional arrangement is therefore
critical for bioactivity, and the elucidation of the precise spatial
disposition required for binding to the receptor is of the utmost
importance in establishing the so-called bioactive conformation.
The incorporation of side chain constrained amino acids
constitutes a powerful tool to explore this important aspect of
peptide structure.6 Restrictions on the ø torsion angles will affect
the conformational preferences of the side substituents and have
an impact on the rotameric distribution with respect to unmodi-
fied residues. The equilibrium among the three low-energy CR-
Câ staggered conformations assumed by proteinogenic amino
acids may be shifted to a particular rotamer. Moreover,
dispositions not accessible to these residues may be allowed,
preferred, or even fixed by adequately restricting the ø values.
Thus, the incorporation of amino acids with well-defined ø
tendencies into bioactive peptides may provide fundamental
insights into the precise conformational requirements of the side
chain groups to fit the receptor binding site.
Phenylalanine, in the same way as other aromatic residues,
seems to play an important role in recognition processes and is
often located in pharmacophoric regions.7 In addition, a wide
variety of constrained phenylalanine analogues with different
degrees of control over the benzylic chain orientation has
become synthetically available.8 This amino acid therefore
constitutes an appropriate candidate to investigate the structural
and biological consequences arising from side chain restriction.
The rotational freedom of the side chain can first be influenced
by methylation at the R- or â-positions, which has been
extensively studied in (RMe)Phe-4d,9 and (âMe)Phe-containing6,9f,10
peptides. The presence of more sterically demanding groups,
as in (REt)Phe,11 (âiPr)Phe,6,12 and Dip (diphenylalanine),13 will
further reduce the space available to the phenyl ring. In all these
cases, rotation about CR-Câ is limited by steric interactions
between the vicinal substituents. Rigidity can be increased
through the introduction of bridges of variable length between
different parts of the molecule, and this type of modification
has proven extremely useful in the case of Tic (1,2,3,4-
tetrahydroisoquinoline carboxylic acid).13b,d,14
An attractive series of phenylalanine cyclic derivatives can
be obtained by linking the R- and â-carbons through an
alkylidene bridge. Rotation about CR-Câ is then prohibited, the
side chain orientation being dictated by both the bridge length
(and subsequent ring size) and the stereochemistry at CR and
Câ. The smallest member of this family, in which an additional
methylene unit closes a cyclopropane and which we denote as
c3Phe, has been incorporated into several peptide sequences.13b,15,16
In this context, we have studied its behavior in the model
dipeptides RCO-L-Pro-c3Phe-NHMe16 and observed an influence
of c3Phe chirality on the â-turn type accommodated in weakly
polar solvents. Of special relevance is the finding that, among
the two cis derivatives, (S,S)c3Phe (analogous to L-Phe)
preferentially induces a type I â-turn, whereas (R,R)c3Phe
(analogous to D-Phe) tends more to âII-folding. It should be
noted that for both cis stereoisomers the rigid cyclopropane
moiety confines the amino and phenyl groups to an eclipsed
conformation (ø1 ≈ 0°, Figure 1). On the basis of these
observations we have proposed that an attractive interaction
between the free c3Phe-NH and the aromatic π-orbitals might
play an important role on the observed â-turn tendencies. It
appears that this stabilizing intramolecular interaction can be
overcompensated by solvation or molecular aggregation, since
in DMSO solution and in the solid state both dipeptides
incorporating cis-c3Phe accommodate the same âII-turn struc-
ture.
(12) Liao, S.; Shenderovich, M. D.; Lin, J.; Hruby, V. J. Tetrahedron
1997, 53, 16645-16662.
(6) Hruby, V. J.; Li, G.; Haskell-Luevano, C.; Shenderovich, M.
Biopolymers 1997, 43, 219-266.
(7) Marshall, G. R. Curr. Opin. Struct. Biol. 1992, 2, 904-919.
(8) Gibson, S. E.; Guillo, N.; Tozer, M. J. Tetrahedron 1999, 55, 585-
615.
(13) (a) Rao, S. N.; Chan, M. F.; Profeta, S. S., Jr.; Balaji, V. N. J.
Pept. Res. 1997, 49, 145-154. (b) De´ry, O.; Josien, H.; Grassi, J.; Chassaing,
G.; Couraud, J. Y.; Lavielle, S. Biopolymers 1996, 39, 67-74. (c) Cody,
W. L.; He, J. X.; DePue, P. L.; Waite, L. A.; Leonard, D. M.; Sefler, A.
M.; Kaltenbronn, J. S.; Haleen, S. J.; Walker, D. M.; Flynn, M. A.; Welch,
K. M.; Reynolds, E. E.; Doherty, A. M. J. Med. Chem. 1995, 38, 2809-
2819. (d) Josien, H.; Lavielle, S.; Brunissen, A.; Saffroy, M.; Torrens, Y.;
Beaujouan, J.-C.; Glowinski, J.; Chassaing, G. J. Med. Chem. 1994, 37,
1586-1601. (e) Cheng, L.; Goodwin, C. A.; Schully, M. F.; Kakkar, V.
V.; Claeson, G. J. Med. Chem. 1992, 35, 3364-3369.
(9) (a) Gratias, R.; Konat, R.; Kessler, H.; Crisma, M.; Valle, G.; Polese,
A.; Formaggio, F.; Toniolo, C.; Broxterman, Q. B.; Kamphuis, J. J. Am.
Chem. Soc. 1998, 120, 4763-4770. (b) Benedetti, E.; Gavuzzo, E.; Santini,
A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.; Mahr, C.; Goodman, M. J. Pept. Sci.
1995, 1, 349-359. (c) Pantano, M.; Formaggio, F.; Crisma, M.; Bonora,
G. M.; Mammi, S.; Peggion, E.; Toniolo, C.; Boesten, W. H. J.; Broxterman,
Q. B.; Schoemaker, H. E.; Kamphuis, J. Macromolecules 1993, 26, 1980-
1984. (d) Valle, G.; Pantano, M.; Formaggio, F.; Crisma, M.; Toniolo, C.;
Pre´cigoux, G.; Sulzenbacher, G.; Boesten, W. H. J.; Broxterman, Q. B.;
Schoemaker, H. E.; Kamphuis, J. Biopolymers 1993, 33, 1617-1625. (e)
Toniolo, C.; Formaggio, F.; Crisma, M.; Valle, G.; Boesten, W. H. J.;
Schoemaker, H. E.; Kamphuis, J.; Temussi, P. A.; Becker, E. L.; Pre´cigoux,
G. Tetrahedron 1993, 49, 3641-3653. (f) Huang, Z.; He, Y.-B.; Raynor,
K.; Tallent, M.; Reisine, T.; Goodman, M. J. Am. Chem. Soc. 1992, 114,
9390-9401.
(10) (a) Tourwe´, D.; Mannekens, E.; Diem, T. N. T.; Verheyden, P.;
Jaspers, H.; To´th, G.; Pe´ter, A.; Kerte´sz, I.; To¨ro¨k, G.; Chung, N. N.;
Schiller, P. W. J. Med. Chem. 1998, 41, 5167-5176. (b) Misicka, A.;
Cavagnero, S.; Horvath, R.; Davis, P.; Porreca, F.; Yamamura, H. I.; Hruby,
V. J. J. Pept. Res. 1997, 50, 48-54. (c) Haskell-Luevano, C.; Toth, K.;
Boteju, L.; Job, C.; Castrucci, A. M. L.; Hadley, M. E.; Hruby, V. J. J.
Med. Chem. 1997, 40, 2740-2749. (d) Azizeh, B. Y.; Shenderovich, M.
D.; Trivedi, D.; Li, G.; Sturm, N. S.; Hruby, V. J. J. Med. Chem. 1996, 39,
2449-2455. (e) Mosberg, H. I.; Omnaas, J. R.; Lomize, A.; Heyl, D. L.;
Nordan, I.; Mousigian, C.; Davis, P.; Porreca, F. J. Med. Chem. 1994, 37,
4384-4391. (f) Nikiforovich, G. V.; Prakash, O. M.; Gehrig, C. A.; Hruby,
V. J. Int. J. Pept. Protein Res. 1993, 41, 347-361. (g) Hruby, V. J.; Toth,
G.; Gehrig, C. A.; Kao, L.-F.; Knapp, R.; Lui, G. K.; Yamamura, H. I.;
Kramer, T. H.; Davis, P.; Burks, T. F. J. Med. Chem. 1991, 34, 1823-
1830.
(14) (a) Flippen-Anderson, J. L.; Deschamps, J. R.; George, C.; Reddy,
P. A.; Lewin, A. H.; Brine, G. A.; Sheldrick, G.; Nikiforovich, G. J. Pept.
Res. 1997, 49, 384-393. (b) Manning, M.; Cheng, L. L.; Stoev, S.;
Bankowski, K.; Przybyiski, J.; Klis, W. A.; Sawyer, W. H.; Wo, N. C.;
Chan, W. Y. J. Pept. Sci. 1995, 1, 66-79. (c) Wilkes, B. C.; Schiller, P.
W. Biopolymers 1995, 37, 391-400. (d) Valle, G.; Kazmierski, W. M.;
Crisma, M.; Bonora, G. M.; Toniolo, C.; Hruby, V. J. Int. J. Pept. Protein
Res. 1992, 40, 222-232. (e) Kazmierski, W. M.; Yamamura, H. I.; Hruby,
V. J. J. Am. Chem. Soc. 1991, 113, 2275-2283. (f) Schiller, P. W.;
Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung, N. N.; Marsden,
B. J.; Wilkes, B. C. J. Med. Chem. 1991, 34, 3125-3132. (g) Lebl, M.;
Hill, P.; Kazmierski, W.; Ka´ra´szova´, L.; Slaninova´, J.; Fric, I.; Hruby, V.
J. Int. J. Pept. Protein Res. 1990, 36, 321-330. (h) Kazmierski, W.; Hruby,
V. J. Tetrahedron 1988, 44, 697-710.
(15) (a) Burgess, K.; Ho, K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117,
3808-3819. (b) Yoshitomi, H.; Shimohigashi, Y.; Matsumoto, H.; Waki,
M.; Takano, Y.; Kamiya, H.; Stammer, C. H. Pept. Chem. 1989, 26, 43-
46. (c) Ogawa, T.; Yoshitomi, H.; Kodama, H.; Waki, M.; Stammer, C.
H.; Shimohigashi, Y. FEBS Lett. 1989, 250, 227-230. (d) Mapelli, C.;
Stammer, C. H.; Lok, S.; Mierke, D. F.; Goodman, M. Int. J. Pept. Protein
Res. 1988, 32, 484-495. (e) Shimohigashi, Y.; Takano, Y.; Kamiya, H.;
Costa, T.; Herz, A.; Stammer, C. H. FEBS Lett. 1988, 233, 289-293. (f)
Shimohigashi, Y.; Costa, T.; Pfeiffer, A.; Herz, A.; Kimura, H.; Stammer,
C. H. FEBS Lett. 1987, 222, 71-74. (g) Mapelli, C.; Kimura, H.; Stammer,
C. H. Int. J. Pept. Protein Res. 1986, 28, 347-359.
(11) (a) Doi, M.; Ishida, T.; Polese, A.; Formaggio, F.; Crisma, M.;
Toniolo, C.; Broxterman, Q. B.; Kamphuis, J. Peptide Res. 1995, 8, 294-
297. (b) Formaggio, F.; Pantano, M.; Crisma, M.; Bonora, G. M.; Toniolo,
C.; Kamphuis, J. J. Chem. Soc., Perkin Trans. 2 1995, 1097-1101.
(16) (a) Jime´nez, A. I.; Cativiela, C.; Aubry, A.; Marraud, M. J. Am.
Chem. Soc. 1998, 120, 9452-9459. (b) Jime´nez, A. I.; Vanderesse, R.;
Marraud, M.; Aubry, A.; Cativiela, C. Tetrahedron Lett. 1997, 38, 7559-
7562.