5916
Organometallics 1998, 17, 5916-5919
Com p lexes w ith a Mon oh a p to Bou n d P h osp h or u s
Tetr a h ed r on a n d P h osp h a a lk yn e1
Thomas Gro¨er, Gerhard Baum, and Manfred Scheer*,2
Institut fu¨r Anorganische Chemie der Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany
Received August 7, 1998
Summary: The reaction of white phosphorus with the
coordinatively unsaturated [M(CO)3(PR3)2] complexes (M
) Mo, W; R ) Cy, Pri) yields the compounds [M(CO)3-
(PR3)2(η1-P4)] in which the P4-tetrahedron is end-on
bonded to the metal. In the same manner reacts Ar′CtP
[FeH(η1-PtCBut)(dppe)2][BPh4] 3b9 with a η1-ligated
phosphaalkyne are structurally characterized. Recently,
Bedford et al. reported the synthesis of the complex
[Ru(η1-PtCAr′)(CO)2(PPh3)2] suggesting an η1-coordina-
tion of the phosphaalkyne PtCAr′ (Ar′ ) C6H2But -
3
(Ar′ ) C6H2But -2,4,6) with this complex to give [W(CO)3-
3
2,4,6) to the central ruthenium atom, which was con-
(PCy3)2(η1-PtCAr′)]. The X-ray structures of the products
are discussed, and for the P4-unit in [W(CO)3(PCy3)2(η1-
P4)] the librational analysis was performed to correct
their translational and rotational motions.
firmed by spectroscopic data.10
Interest has been focused on unsubstituted group 15
ligands bonded to transition metal complexes for several
years.3 Most of the Px ligand complexes are formed by
reaction of white phosphorus with the appropriate
transition metal complexes. However, only one type of
compounds with a monohapto bound P4-tetrahedron is
known, the [(η1-P4)M(np3)] (1) (M ) Ni (a ), Pd (b); np3
) N(CH2CH2PPh2)3) complexes reported by Sacconi and
co-workers.4 Moreover, Ginsberg and Lindsell suggested
the occurrence of a side-on coordinated P4-unit in
compounds of the type [(R3P)2MCl(η2-P4)] (2) (M ) Rh
(a ), Ir (b)).5 The nature of bonding to P4 in the latter
complexes was established to be a side-on coordination
of a P-P edge of the intact P4 tetrahedron. The long
P-P bond of 2.4616(22) Å, however, rather gives evi-
dence for an open edge, where a tetraphosphabicyclo-
butane coordinates to a metal(III) center. Other reac-
tions of transition metal complexes with white phos-
phorus lead to transformation of the tetrahedral P4-
unit.3,6 In a similar manner, the number of mononuclear
coordination complexes formed with untransformed
phosphaalkyne remains small.7 Among them only the
complexes trans-[Mo(η1-PtCAd)2(depe)2] 3a 8 and trans-
We found that in both respectssforming η1-complexes
of P4 as well as of phosphaalkynessthe electronically
and coordinatively unsaturated compounds [M(CO)3-
(PCy3)2] (M ) Mo, W), serve as the ideal starting
material. These complexes are known to coordinate
numerous small molecules such as H2 and N2.11
The reaction of [M(CO)3(PR3)2] with 1 equiv of P4 in
toluene at -78 °C leads to the capture of one phosphorus
lone pair yielding the η1-bonded P4 complexes [M(CO)3-
(PR3)2(η1-P4)] (4a -c) (4a : M ) W, R ) Cy; 4b: M ) W,
R ) Pri; 4c: M ) Mo, R ) Cy). These complexes are
stable in solution (hexane, toluene) up to 0 °C, and then
they decompose to the 18 VE compounds [M(CO)4-
(PR3)2]12 (5a ,b) (M ) W, Mo) and P4. However at low
temperatures 4a -c crystallize as orange-yellow com-
pounds. The air-sensitive solids are stable at ambient
temperatures under argon. They are soluble in common
organic solvents.
(1) Dedicated to Prof. Dr. O. J . Scherer in occasion of his 65th
birthday.
(2) To whom the correspondence should be addressed. Tel.:
+49(0) 721 608 3088. Fax: +49 (0) 721 662119. E-mail: mascheer@
achibm6.chemie.uni-karlsruhe.de.
(3) (a) Scheer, M.; Herrmann, E. Z. Chem. 1990, 30, 41. (b) Scherer,
O. J . Angew. Chem., Int. Ed. Engl. 1990, 29, 1137.
(4) (a) Dapporto, P.; Midollini, S.; Sacconi, L. Angew. Chem., Int.
Ed. Engl. 1979, 18, 510. (b) Dapporto, P.; Sacconi, L.; Stoppioni P.;
Zanobini, F. Inorg. Chem. 1981, 20, 3834.
The structure of 4a reveals the 18-valence-electron
complex [W(CO)3(PCy3)2(η1-P4)] with a η1-bonded P4
tetrahedron (Figure 1). The distance of the coordinated
(5) Ginsberg, P.; Lindsell, W. E.; McCullough, K. J .; Sprinkle, C.
R.; Welch, A. J . J . Am. Chem. Soc. 1986, 108, 403.
(6) (a) Scheer, M.; Schuster, K.; Becker, U. Phosphorus, Sulfur,
Silicon 1996, 109-110, 141. Scheer, M.; Becker, U. Chem. Ber. 1996,
129, 1307. (c) Scheer, M.; Becker, U. J . Organomet. Chem. 1997, 545-
546, 451.
(7) (a) Nixon, J . F. Chem. Rev. 1988, 88, 1327. (b) Binger, P. In
Multiple Bonds and Low Coordination in Phosphorus Chemistry;
Regitz, M., Scherer, O. J ., Eds.; G. Thieme Verlag: Stuttgart, 1990; p
90ff. (c) Nixon, J . F.; Chem. Ind. 1993, 7, 404. (d) Nixon, J . F. Chem.
Soc. Rev. 1995, 319. (e) Nixon, J . F. Coord. Chem. Rev. 1995, 95, 201-
258.
(9) (a) Nixon, J . F.; Meidine, M. F.; Lemos, M. A. N. D. A.; Hitchcock,
P. B.; Pombeiro, A. J . L. J . Chem. Soc, Dalton, Trans. 1998, in press.
(b) Hitchcock, P. B.; Amelia, M.; Lemos, M. A. N. D. A.; Meidine, M.
F.; Nixon, J . F.; Pombeiro, A. J . L. J . Organomet. Chem. 1991, 402,
C23.
(10) Bedford, B.; Hill, A. F.; Wilton-Ely, J . D. E. T.; Francis, M. D.;
J ones, C. Inorg. Chem. 1997, 36, 5142.
(11) Wassermann, J .; Kubas, G. J .; Ryan, R. R. J . Am. Chem. Soc.
1986, 108, 2294.
(8) Hitchcock, P. B.; Maah, M. J .; Nixon, J . F.; Zora, J . A.; Leigh, G.
J .; Bakar, M. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 474.
(12) Moers, F. G.; Reuvers, J . G. A. Recl. Trav. Chim. Pays-Bas.
1974, 93, 246.
10.1021/om9806794 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 11/20/1998