6860 J. Phys. Chem. B, Vol. 101, No. 35, 1997
Yamamoto et al.
(8) (a) Maeda, Y.; Kitano, H. J. Phys. Chem. 1995, 99, 487-488. (b)
Rojas, M. T.; Ko¨niger, R.; Stoddart, J. F.; Kaifer, A. E. J. Am. Chem. Soc.
1995, 117, 336-343. (c) Nelles, G.; Weisser, M.; Back, R.; Wohlfart, P.;
Wenz, G.; Mittler-Neher, S. J. Am. Chem. Soc. 1996, 118, 5039-5046.
(9) (a) Ulman, A. An Introduction to Ultrathin Organic Films from
Langmuir-Blodgett to Self-Assembly; Academic Press: San Diego, CA,
1991. (b) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481-
4483. (c) Hill, W.; Wehling, B. J. Phys. Chem. 1993, 97, 9451-9455. (d)
Black, A. J.; Wooster, T. T.; Geiger, W. E.; Paddon-Row, M. N. J. Am.
Chem. Soc. 1993, 115, 7924-7925.
that with free CD probably because of the deeper inclusion and
the enhancement of nonspecific interaction with Ag surface.
These are probable reasons for the increase in the stereoselec-
tivity of p-MR-PEA (the deeper inclusion promotes the contact
of chiral center with the CD rim) and reduction in that of
o-MR-PEA (the enhanced nonspecific interaction weakens the
specific effect of chiral center) on Ag surfaces.
In conclusion, investigation of the inclusional complexation
of free and surface-confined CD was carried out by Raman
spectroscopy for the first time. To study the stereoselectivity
of the molecular recognition by CD, optically active azo dyes
were used. The association constants for free CD and MR-
PEA obtained by Raman spectroscopy were almost the same
with those obtained by UV-vis spectroscopy. The association
constants between surface-confined CD and MR-PEA were
measured by surface-enhanced resonance Raman spectroscopy.
o-MR-PEA formed more a stable inclusional complex than
p-MR-PEA (regioselective) due to the contribution of the
destruction of water cluster around PEA moiety. The R
enantiomer of o-MR-PEA associated with both free and
surface-confined CD more preferentially than did the S enan-
tiomer (stereoselective). Furthermore, the stereoselectivity for
o-MR-PEA decreased at interfaces due to the enhancement of
the nonspecific interaction, whereas that for p-MR-PEA
increased by the contribution of interaction with the chiral center
which was induced by the deeper inclusion.
(10) Maeda, Y.; Yamamoto, H.; Kitano, H. J. Phys. Chem. 1995, 99,
4837-4841.
(11) (a) Du¨rig, U.; Zu¨ger, O.; Michel, B.; Ha¨ussling, L.; Ringsdorf, H.
Phys. ReV. B 1993, 48, 1711-1717. (b) Kim, Y.-T; McCarley, R. L.; Bard,
A. J. Langmuir 1993, 9, 1941-1944. (c) Li, W.; Virtanen, J. A.; Penner,
R. M. J. Phys. Chem. 1994, 98, 11751-11755.
(12) (a) Burnham, N. A.; Dominguez, D. D.; Mowery, R. L.; Colton,
R. J. Phys. ReV. Lett. 1990, 64, 1931-1934. (b) Pan, J.; Tao, N.; Lindsay,
S. M. Langmuir 1993, 9, 1556-1560. (c) Butt, H.-J.; Seifert, K.; Bamberg,
E. J. Phys. Chem. 1993, 97, 7316-7320.
(13) (a) Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J.
Am. Chem. Soc. 1987, 109, 3559-3568. (b) Nuzzo, R. G.; Dubois, L. H.;
Allara, D. L. J. Am. Chem. Soc. 1990, 112, 558-569. (c) Tao, Y.-T.; Lee,
M.-T.; Chang, S.-C. J. Am. Chem. Soc. 1993, 115, 9547-9555. (d)
Katayama, N.; Ozaki, Y.; Seki, T.; Tamaki, T.; Iriyama, K. Langmuir 1994,
10, 1898-1902. (e) Labinis, P. E.; Bain, C. D.; Nuzzo, R. G.; Whitesides,
G. M. J. Phys. Chem. 1995, 99, 7663-7676.
(14) (a) Cotton, M. Spectroscopy of Surfaces; Clark, R. J. H., Hester,
R. E., Eds.; John Wiley & Sons: New York, 1988; pp 91-153. (b) Joa, S.
L.; Pemberton, J. E. J. Phys. Chem. 1993, 97, 9420-9424. (c) Jennings, C.
A.; Kovacs, G. J.; Aroca, R. Langmuir 1993, 9, 2151-2155. (d) Al-Obaidi,
A. H. R.; Rigby, S. J.; McGarvey, J. J.; Walmsley, D. G.; Smith, K. W.;
Hellemans, L.; Snauwaert, J. J. Phys. Chem. 1994, 98, 11163-11168. (e)
Crane, L. G.; Wang, D.; Sears, L. M.; Heyns, B.; Carron, K. Anal. Chem.
1995, 67, 360-364. (f) Munro, C. H.; Smith, W. E.; Armstrong, D. R.;
White, P. C. J. Phys. Chem. 1995, 99, 879-885.
(15) (a) Schrader, B. Infrared and Raman Spectroscopy; VCH: New
York, 1995. (b) Garrell, R. L. Anal. Chem. 1989, 61, 401A-411A.
(16) Carey, P. R. Biological Applications of Raman and Resonance
Raman Spectroscopies; Academic Press: New York, 1982.
Although the stereoselectivity observed here was not satis-
factorily high, our findings strongly suggest the possibility of
SAM of CD derivatives as stereoselective chemical sensor.
Acknowledgment. This work was supported by Grant-in-
Aid (08246222, 09240213, 09232223) from Ministry of Educa-
tion, Science and Culture, Japan. Y.M is grateful for the financial
support from the Nissan Science Foundation (Tokyo).
(17) Machida, K.; Kim, B.-K.; Saito, Y.; Igarashi, K.; Uno, T. Bull.
Chem. Soc. Jpn. 1974, 47, 78-83.
(18) (a) Ueno, A.; Kuwabara, T.; Nakamura, A.; Toda, F. Nature, 1992,
356, 136-137. (b) Kuwabara, T.; Nakamura, A.; Ueno, A.; Toda, F. J.
Phys. Chem. 1994, 98, 6297-6303.
(19) Sato, H.; Higuchi, S.; Teramae, N.; Tanaka, S. Chem. Lett. 1979,
299-300.
(20) Cramer, F.; Saenger, W.; Spatz, H.-Ch. J. Am. Chem. Soc. 1967,
89, 14-20.
(21) (a) Rekharsky, M. V.; Schwarz, F. P.; Tewari, Y. B.; Goldberg, R.
N. J. Phys. Chem. 1994, 98, 10282-10288. (b) Rekharsky, M. V.; Goldberg,
R. N.; Schwarz, F. P.; Tewari, Y. B.; Ross, P. D.; Yamashoji, Y.; Inoue,
Y. J. Am. Chem. Soc. 1995, 117, 8830-8840.
(22) Lewis, E. A.; Hansen, L. D. J. Chem. Soc., Perkin Trans. 2 1973,
2081-2085.
(23) (a) Tabushi, I.; Kiyosuke, Y.; Sugimoto, T.; Yamamura, K. J. Am.
Chem. Soc. 1978, 100, 916-919. (b) Gelb, R. I.; Schwartz, L. M.; Cardelino,
B.; Fuhrman, H. S.; Johnson, R. F.; Laufer, D. A. J. Am. Chem. Soc. 1981,
103, 1750-1757. (c) Yoshida, N.; Seiyama, A.; Fujimoto, M. J. Phys. Chem.
1990, 94, 4246-4253.
(24) Komiyama, M.; Bender, M. L. J. Am. Chem. Soc. 1978, 100, 2259-
2260.
(25) Harata, K. Bull. Chem. Soc. Jpn. 1976, 49, 1493-1501.
(26) (a) Joo, T. H.; Kim, K.; Kim, M. S. J. Phys. Chem. 1986, 90, 5816-
5819. (b) Bryant, M. A.; Pemberton, J. E. J. Am. Chem. Soc. 1991, 113,
3629-3637. (c) Bryant, M. A.; Pemberton, J. E. J. Am. Chem. Soc. 1991,
113, 8284-8293.
(27) Maeda, Y.; Fukuda, T.; Yamamoto, H.; Kitano, H. Langmuir, in
press.
References and Notes
(1) (a) Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry;
Springer-Verlag: Berlin, 1978. (b) Toda, F.; Ueno, A. Cyclodextrin;
Sangyotosho: Tokyo, 1995. (c) Cramer, F.; Hettler, H. Naturwissenschaften
1967, 54, 625-632.
(2) (a) Impellizzeri, G.; Maccarrone, G.; Rizzarelli, E.; Vecchio, G.;
Corradini, R.; Marchelli, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1348-
1349. (b) Martin, K. A.; Mortellaro, M. A.; Sweger, R. W.; Fikes, L. E.;
Winn, D. T.; Clary, S.; Johnson, M. P.; Czarnik, A. W. J. Am. Chem. Soc.
1995, 117, 10443-10448. (c) Venema, F.; Rowan, A. E.; Nolte, R. J. M.
J. Am. Chem. Soc. 1996, 118, 257-258.
(3) (a) Nozaki, T.; Maeda, Y.; Ito, K.; Kitano, H. Macromolecules 1995,
28, 522-524. (b) Nozaki, T.; Maeda, Y.; Kitano, H. J. Polym. Sci., Polym.
Chem. 1997, A35, 1535-1541. (c) Nozaki, T.; Maeda, Y.; Kitano, H. J.
Chem. Soc., Perkin Trans. 2 1997, 1217-1220.
(4) Armspach, D.; Ashton, P. R.; Moore, C. P.; Spencer, N.; Stoddart,
J. F.; Wear, T. J.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1993, 32,
854-858.
(5) (a) Harada, A.; Kamachi, M. Macromolecules 1990, 23, 2821-
2823. (b) Harada, A.; Li, J.; Kamachi, M. Nature 1993, 364, 516-518. (c)
Rao, T. V. S.; Lawrence, D. S. J. Am. Chem. Soc. 1990, 112, 3614-3615.
(d) Wenz, G.; Keller, B. Angew. Chem., Int. Ed. Engl. 1992, 31, 197-199.
(6) (a) Berthod, A.; Chang, S. C.; Armstrong, D. W. Anal. Chem. 1992,
64, 395-404. (b) Kuroda, Y.; Kato, T.; Ogoshi, H. Bull. Chem. Soc. Jpn.
1993, 66, 1116-1120.
(7) Uekama, K. Drug DeliVery System; Sezaki, H., Eds.; Nankoudou:
Tokyo, 1986; pp 73-79.