Method for studying the influence of
the forming of sheet steel laminates
on the adhesion polymer/steel
J. Guillemenet*, S. Bistac*, P. Deprez**,
P. Junges**, J. Schultz*
* ICSI- CNRS, Mulhouse
** Usinor - LEDEPP, Florange
Sheet steel laminates are obtained by the hot co-rolling
of two sheets, one of which is precoated on the inside
with a thin layer of viscoelastic resin. The sandwich
structures obtained in this way dampen vibrations with
damping coefficients similar to those of plastics, while
conserving the strength of steel. They can be used for
structures such as staircases, doors, floors, protection
rails, etc. This configuration offers a large number of
advantages due to the resulting original mechanical
behaviour. In particular, it provides an efficient solution
to requirements involving combinations of lightness,
stiffness, mechanical strength and thermal insulation,
and especially acoustic insulation which has led to the
development of the vibration damping sandwich sheets.
The torsion shear test gives information on the mecha-
nical and adherence shear properties and allows to eva-
luate the damage sensibility of polymer during shear
mechanical solicitation. The results show that the break
shear behaviour of sheet steel laminates depends on a
critical strain/deformation couple (γS, τS) of predeforma-
tion. This couple is a polymer characteristic which cor-
responds to the maximum elongation and damage of
macromolecular chains, solicitation and failure of cross-
linked points. During the shear predeformation, if the
solicitation is going up this critical deformation, the
shear adherence of the laminate decreases. The resi-
dual shear adherence after a shear solicitation depends
then on the intrinsic polymer properties and the solicita-
tion level.
The objective of the study is to determine the influence
of the forming on the adherence properties of sheet
steel laminates. When the core is thin, from 0.05 to
1 times the thickness of the facing sheet, the resulting
sandwich can be coiled, and can be blanked and formed
using standard techniques employed for ordinary
sheets, and where necessary assembled to form the
finished component. This is a major advantage of thin-
core sandwich structures, which can be processed like
standard sheet, but provide additional features such as
lightness and vibrational damping. But the stamping
operation is quite damageable for this sort of materials.
Two adherence tests are using : torsion shear test
(napkin-ring) and wedge test in order to evaluate the
metal/polymer adhesion before and after deformation.
Drawing is then decomposed in different solicitations :
stretching (or biaxial tension), plane strain tension,
uniaxial tension and shear deformation.
The wedge test, chosen because of the small-scale of
the sample (10 × 50 mm2), allows us to test a large
panel of sheet steel laminates after an elementary pre-
deformation (uniaxial traction, plane traction and stret-
ching). After these three types of predeformation, the
residual metal/polymer adhesion rapidly decreases until
a level of deformation corresponding to the yield limit
of the polymer. For a more important deformation, the
adhesion still constant. In spite of the important defor-
mation obtained, no polymer/metal delamination is
observed.
The proposed methodology permits to evaluate the
impact of a forming on the adherence properties of
steel/polymer/steel system. It can be applied to elemen-
tary deformation easily obtained in laboratory, in order to
predict the evolution of adherence during real forming of
the laminate.
– allongement réparti : 23,9 %,
sa température de transition vitreuse est située vers 10°C.
Cette résine présente un domaine élastique jusqu’à une
déformation de 13 % et un fort allongement à la rupture
d’environ 200 %.
– allongement à la rupture : 42,3 %,
– taux d’écrouissage : 0,2415,
– constante d’écrouissage : 5,325.108 Pa.
Le procédé de fabrication de ces assemblages est basé
sur le colaminage à haute température des tôles d’acier.
L’assemblage acier/polymère/acier est obtenu par enduction
d’un film de résine d’épaisseur contrôlée, évaporation des
solvants et calandrage à chaud des deux parements d’acier.
Le polymère est une résine polyester réticulée avec une
époxy (type DGEBA) et un anhydride. La figure 1 représente
une courbe de traction du polymère obtenue pour une vitesse
de 100 mm/min. Son module d’élasticité est de 3,5 MPa et
186
La Revue de Métallurgie-CIT/Science et Génie des Matériaux
Février 2001