3754
J . Org. Chem. 2000, 65, 3754-3760
Asym m etr ic Ald ol Rea ction s Usin g
(S,S)-(+)-P seu d oep h ed r in e-Ba sed Am id es: Ster eoselective
Syn th esis of r-Meth yl-â-h yd r oxy Acid s, Ester s, Keton es, a n d
1,3-Syn a n d 1,3-An ti Diols
J ose L. Vicario, Dolores Bad´ıa,* Esther Dom´ınguez, Mo´nica Rodr´ıguez, and Luisa Carrillo
Departamento de Quı´mica Orga´nica, Facultad de Ciencias, Universidad del Pa´ıs Vasco, P.O. Box 644,
48080 Bilbao, Spain
Received J anuary 11, 2000
A very efficient method for performing stereoselective aldol reactions is reported. The reaction of
(S,S)-(+)-pseudoephedrine-derived propionamide enolates with several aldehydes yielded exclusively
one of the four possible diastereomers in good yields, although transmetalation of the firstly
generated lithium enolate with a zirconium(II) salt, prior to the addition of the aldehyde, is necessary
in order to achieve high syn selectivity. The so-formed syn-R-methyl-â-hydroxy amides were
transformed into other valuable chiral nonracemic synthons such as R-methyl-â-hydroxyacids, esters,
and ketones. Finally, a stereocontrolled reduction procedure starting from the so-obtained R-methyl-
â-hydroxy ketones has been developed allowing the synthesis of either 1,3-syn- or 1,3-anti-R-methyl-
1,3-diols in almost enantiopure form by choosing the appropriate reaction conditions.
In tr od u ction
conditions, the stereochemistry of the first chiral center
would be controlled by the approach of the aldehyde from
one of the two diastereotopic faces of the enolate (the so-
called enantiofacial differentiation1e or diastereofacial
selectivity1a) and therefore by the chiral information
The aldol reaction is regarded as one of the most
powerful tools in organic synthesis for the formation of
carbon-carbon bonds. Consequently, over the past 20
years, an extensive number of methodologies for per-
forming enantioselective aldol reactions of chiral enolates
with achiral aldehydes have been reported in the litera-
ture.1 The different strategies employed in order to
achieve the desired high stereocontrol can be classified
according to the position in which the chiral information
is incorporated: (1) the use of carbonyl compounds
carrying chiral auxiliaries that can be easily removed
from the final product,2 (2) the use of metal enolates,
typically B, Ti, Sn, or Li, with the presence of a chiral
ligand bound covalently or not to the metal center,3 and
(3) performing the reaction in a catalytic fashion in the
presence of a chiral catalyst.4 Among the first ones, a vast
array of compounds have been used as chiral inductors,
such as Evans-type oxazolidinones,1b,c,5 Meyers oxazoli-
dines,3a bornane derivatives,6 thiazolidinones, thiazoli-
dinethiones or oxazolidinethiones,7 imidazolidinones,8
Oppolzer’s sultams,9 amino alcohols,10 aziridines,11 chiral
sulfoxides,12 ferrocenyliron complexes,13 diols,14 diamines,15
benzoxazinones,16 hydrazones,17 atropisomeric amines,18
menthone derivatives,19 and so on.
(3) For boron enolates, see: (a) Meyers, A. I.; Yamamoto, Y.
Tetrahedron 1984, 40, 2309-2315. (b) Reetz, M. T.; Kunisch, F.;
Heitman, P. Tetrahedron Lett. 1986, 27, 4721-4724. (c) Masamune,
S.; Sato, T.; Kim, B.-M.; Wollmann, T. A. J . Am. Chem. Soc. 1986,
108, 8279-8281. (d) Reetz, M. T.; Rivaedeneira, E.; Niemeyer, C.
Tetrahedron Lett. 1990, 27, 3863-3866. (e) Corey, E. J .; Kim, S. S. J .
Am. Chem. Soc. 1990, 112, 4976-4977. (f) Gennari, C.; Hewkin, C. T.;
Molinari, F.; Bernardi, A.; Comotti, A.; Goodman, J . M.; Paterson, I.
J . Org. Chem. 1992, 57, 5173-5177. (g) Gennari, C.; Moresca, D.; Vieth,
S.; Vulpetti, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1618-1621.
(h) Abu Hena, M.; Terauchi, S.; Kim, C.-S.; Horiike, M.; Kiyooka, S.-I.
Tetrahedron: Asymmetry 1998, 9, 1883-1890. For titanium enolates,
see: (i) Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807-832.
For tin enolates, see: (j) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina,
I.; Mukaiyama, T. J . Am. Chem. Soc. 1991, 113, 4247-4252. For
lithium enolates, see: (k) Laube, T.; Dunitz, J . D.; Seebach, D. Helv.
Chim. Acta 1985, 68, 1373-1377. (l) Ando, A.; Shioiri, T. J . Chem.
Soc., Chem. Commun. 1987, 1620-1623. (m) Muraoka, M.; Kawasaki,
H.; Koga, K. Tetrahedron Lett. 1988, 29, 337-338. (n) Ando, A.; Shioiri,
T. Tetrahedron 1989, 45, 4969-4988. (o) J uaristi, E.; Beck, A. K.;
Hansen, J .; Matt, T.; Mukhopadhyay, T.; Simson, M.; Seebach, D.
Synthesis 1993, 1271-1290. (p) Landais, Y.; Ogay, P. Tetrahedron:
Asymmetry 1994, 5, 541-544. (q) Uragami, M.; Tomioka, K.; Koga, K.
Tetrahedron: Asymmetry 1995, 6, 701-704.
(4) For recent reviews on catalytic asymmetric aldol reactions, see:
(a) Gro¨ger, H.; Vogl, E. M.; Shibasaki, M. Chem. Eur. J . 1998, 4, 1137-
1141. (b) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357-389.
(5) (a) Evans, D. A. In Asymmetric Synthesis; Morrison, J . D., Ed.;
Academic Press: New York, 1984; Vol. 3, Part B, p 1. And also: (b)
Blaser, D.; Ko, S. Y.; Seebach, D. J . Org. Chem. 1991, 56, 6230-6233.
(c) Ghosh, A. K.; Cho, H.; Onishi, M. Tetrahedron: Asymmetry 1997,
8, 821-824.
If we assume that an enolate with one substituent at
the R-possition and with a determined geometry (E or
Z) undergoes an aldol reaction with an aldehyde, four
possible diastereoisomers can be formed. Under kinetic
(6) (a) Helmchen, G.; Leikauf, U.; Knopfel, I. T. Angew. Chem., Int.
Ed. Engl. 1985, 24, 874-880. (b) Oppolzer, W. Tetrahedron 1987, 43,
1969-2004. (c) Bonner, M. P.; Thornton, E. R. J . Am. Chem. Soc. 1991,
113, 1299-1308. (d) Yan, T. H.; Chu, V. V.; Lin, T. C.; Tseng, W. H.;
Cheng, T. W. Tetrahedron Lett. 1991, 32, 5563-5566. (e) Boeckman,
R. K.; J ohnson, A. T.; Musselman, R. A. Tetrahedron Lett. 1994, 35,
8521-8524. (f) Palomo, C.; Gonza´lez, A.; Garc´ıa, J . M.; Landa, C.;
Oiarbide, M.; Rodr´ıguez, S.; Linden, A. Angew. Chem., Int. Ed. Engl.
1998, 37, 180-184. (g) Palomo, C.; Oiarbide, M.; Aizpurua, J . M.;
Gonza´lez, A.; Garc´ıa, J . M.; Landa, C.; Odriozola, I.; Linden, A. J . Org.
Chem. 1999, 64, 8193-8200 and references therein. See also refs 7c-
f, 8b, and 9.
(1) For some reviews, see: (a) Heathcock, C. H. In Asymmetric
Synthesis; Morrison, J . D., Ed.; Academic Press: New York, 1984; Vol.
3, Part B, Chapter 2. (b) Kim, B. M.; Williams, S. F.; Masamune, S. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 2 (Heathcock, C. H., Ed.), Chapter
1, p 239. (c) Evans, D. A.; Nelson, J . V.; Taber, T. R. Top. Stereochem.
1982, 13, 1-28. (d) Paterson, I. Contemp. Org. Synth. 1994, 1, 317-
338. (e) Braun, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 24-37. (e)
Heathcock, C. H. Science 1981, 214, 395-401.
(2) Seyden-Penne, J . Chiral Auxiliaries and Ligands in Asymmetric
Synthesis; J ohn Wiley and Sons: New York, 1995; Chapter 6, p 306.
10.1021/jo000035h CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/20/2000