3798 J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 15
Bailey et al.
a Synthetic NS4A Cofactor Peptide. Cell 1996, 87, 343-355. (c)
Yan, Y.; Li. Y.; Munshi, S.; Sardana, V.; Cole, J . L.; Sardana,
M.; Steinku¨hler, C.; Tomei, L.; De Francesco, Kuo, L.; Chen, Z.
Complex of NS3 Protease and NS4A Peptide of BK Strain
Hepatitis C Virus: A 2.2A Resolution Structure in a Hexagonal
Crystal Form. Protein Sci. 1998, 7, 837-847.
the centroids of the phenyl aromatic ring and the methyl
groups were introduced in the definition of the NOE restraints,
and the interproton distances were corrected accordingly.35
A
single, high temperature unrestrained dynamics run was
performed at 900 K using a time step of 1 fs, with 50 structures
collected at 1 ps intervals to generate a starting set of
conformations. Each structure was then retrieved, cooled, and
minimized using the following simulated annealing protocol.
The temperature was initially lowered to 750 K at a rate of
30 K/ps where only strong restraints were applied. The
remaining restraints were added, and additional cooling to first
500 K (25 K/ps) and then 300 K (20 K/ps) was performed,
followed by restrained minimization (including cross-terms)
to a final gradient of 0.005 kcal/mol‚Å. A total of 14 low energy,
NMR-consistent structures were isolated at the end of this
protocol. These 14 structures were further divided into two
subfamilies of structures (eight and six members, respectively)
according to their slightly different P1 conformations. The first
subfamily of structures (eight-members) was finally selected
as the final representative set of NS3 bound conformations
based on additional knowledge of the three-dimensional
structure of the NS3 protease bound to an inhibitor (unpub-
lished data). These final eight structures are shown superim-
posed (P1-P4 backbone atoms only) in Figure 2. The root-
mean-square deviation for the backbone atoms of P1-P4 is
0.21 Å. None of these structures have distance violations
greater than 0.2 Å and the average total restraint violation
energy is 0.43 kcal/mol with a S. D. ) 0.21 kcal/mol.
(6) (a) Grakoui, A.; Wychowski, C.; Lin, C.; Feinstone, S. M.; Rice,
C. M. Expression and Identification of Hepatitis
C Virus
Polyprotein Cleavage Products. J . Virol. 1993, 67, 1385-1395.
(b) Bartenschlager, R.; Ahlborn-Laake, L.; Mous, J .; J acobsen,
H. Nonstructural Protein 3 of the Hepatitis C Virus Encodes a
Serine-type Proteinase required for Cleavage at the NS3/4 and
NS4/5 J unctions. J . Virol. 1993, 67, 3835-3844. (c) Tomei, L.;
Failla, C.; Santolini, E.; De Francesco, R.; La Monica, N. NS3 is
a Serine Protease Required for Processing of Hepatitis C Virus
Polyprotein. J . Virol. 1993, 67, 4017-4026. (d) Eckart, M. R.;
Selby, M.; Masiarz, F.; Lee, C.; Berger, K.; Crawford, C.; Kuo,
C.; Kuo, G.; Houghton, M.; Choo, Q.-L. Biochem. The Hepatitis
C Virus Encodes a Serine Protease Involved in Processing of the
Putative Nonstructural Proteins from the Viral Polyprotein
Precursor. Biophys. Res. Commun. 1993, 192, 399-406. (e)
Grakoui, A.; McCourt, D. W.; Wychowski, C.; Feinstone, S. M.;
Rice, C. M. Characterization of the Hepatitis C Virus-encoded
Serine Proteinase: Determination of Proteinase-dependent
Polyprotein Cleavage Sites. J . Virol. 1993, 67, 2832-2843. (f)
Kwong, A. D.; Kim, J . L.; Rao, G.; Liposvek, D.; Raybuck, S. A.
Hepatitis C Virus NS3/4A Protease. Antiviral Res. 1998, 40,
1-18.
(7) (a) Bartenschlager, R.; Lohmann, V.; Wilkinson, T.; Koch, J . O.
Complex Formation between the NS3 Serine-type Proteinase of
the Hepatitis C Virus and NS4A and its Importance for Polypro-
tein Maturation. J . Virol. 1995, 69, 7519-7528. (b) Failla, C.;
Tomei, L.; De Francesco, R. An Amino-terminal Domain of the
Hepatitis C Virus NS3 Protease is Essential for Interaction with
NS4A. J . Virol. 1995, 69, 1769-1777. (c) Lin, C.; Thomson, J .
A.; Rice, C. M. A Central Region in the Hepatitis C Virus NS4A
Protein allows Formation of an Active NS3-NS4A Serine
Proteinase Complex in vivo and in vitro. J . Virol. 1995, 69,
4373-4380.
(8) Llina`s-Brunet, M.; Bailey, M.; Fazal, G.; Goulet, S.; Halmos, T.;
Laplante, S.; Maurice, R.; Poirier, M.; Poupart, M.-A.; Thibeault,
D.; Wernic, D.; Lamarre, D. Peptide-based Inhibitors of the
Hepatitis C Virus Serine Protease. Bioorg. Med. Chem. Lett.
1998, 8, 1713-1718.
Su p p or tin g In for m a tion Ava ila ble: 1H NMR data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
Ack n ow led gm en t. We gratefully acknowledge Co-
lette Boucher and Sylvain Bordeleau for providing
analytical support. We also thank Diane Thibeault,
Roger Maurice, Pierre Bonneau, and Ce´line Plouffe for
assay support in this study. Finally, we thank Paul
Anderson, Daniel Lamarre, and Michael Cordingley for
their encouragement and support.
(9) Steinku¨hler, C.; Biasiol, G.; Brunetti, M.; Urbani, A.; Koch, U.;
Cortese, R.; Pessi, A.; De Francesco, R. Product Inhibition of the
Hepatitis C Virus NS3 Protease. Biochemistry 1998, 37, 8899-
8905.
(10) Llina`s-Brunet, M.; Bailey, M.; De´ziel, R.; Fazal, G.; Gorys, V.;
Goulet, S.; Halmos, T.; Maurice, R.; Poirier, M.; Poupart, M.-A.;
Rancourt, J .; Thibeault, D.; Wernic, D.; Lamarre, D. Studies on
the C-terminal of Hexapeptide Inhibitors of the Hepatitis C
Virus Serine Protease. Bioorg. Med. Chem. Lett. 1998, 8, 2719-
2724.
(11) Llina`s-Brunet, M.; Bailey, M.; Fazal, G.; Ghiro, E.; Gorys, V.;
Goulet, S.; Halmos, T.; Maurice, R.; Poirier, M.; Poupart, M.-A.;
Rancourt, J .; Thibeault, D.; Wernic, D.; Lamarre, D. Highly
potent and Selective Peptide-based Inhibitors of the Hepatitis
C Virus Serine Protease: Towards Smaller Inhibitors. Bioorg.
Med. Chem. Lett. 2000, 10, 2267-2270.
(12) Gante, J . Azapeptides. Synthesis 1989, 405-413.
(13) Dutta, A. S.; Giles, M. Polypeptides. Part XIV. A Comparative
Study of the Stability towards Enzymes of Model Tripeptides
Containing R-Aza-amino acids, L.-Amino acids, and D-Amino
acids. J . Chem. Soc., Perkin Trans. 1 1976, 244-248.
(14) Dutta, A. S.; Giles, M.; Williams, J .; Inhibitors of Porcine
Pancreatic Elastase. Peptides incorporating R-Aza-amino Acid
Residues in the P1 Position. J . Chem. Soc., Perkin Trans. 1 1986,
1655-1663.
(15) (a) Powers, C.; Boone, R.; Carroll, D.; Gupton, B.; Kam, C.-M.;
Nishio, N.; Sakamoto, M.; Tuhy, P. Reaction of Azapeptides with
Human Leukocyte Elastase and Porcine Pancreatic Elastase. J .
Biol. Chem. 1984, 259, 4288-4289. (b) Dorn, C.; Zimmerman,
M.; Yang, S.; Yurewicz, E.; Ashe, B.; Frankshun, R.; J ones, H.
Proteinase Inhibitors. Inhibitors of Elastase. J . Med. Chem.
1977, 20, 1464-1468.
Refer en ces
(1) Hoofnagle, J . H.; Di Bisceglie, A. M. Drug Therapy: The
Treatment of Chronic Viral Hepatitis C. N. Engl. J . Med. 1997,
336, 347-355.
Sheet No. 164, October 2000.
(3) For recent reviews, see: (a) Bartenschlager, R. The NS3/4A
Proteinase of the Hepatitis C Virus: Unraveling Structure and
Function of an Unusual Enzyme and
a Prime Target for
Antiviral Therapy. J . Viral Hep. 1999, 6, 165-181. (b) De
Francesco, R.; Steinku¨hler, C. Hepatitis C Viruses 2000, 242,
149-169.
(4) (a) Lamarre, D.; Anderson, P.; Bailey, M.; Beaulieu, P.; Bolger,
G.; Bonneau, P.; Bo¨s, M.; Cameron, D.; Cartier, M.; Cordingley,
M; Faucher, A.-M.; Goudreau, N.; Kawai, S.; Kukolj, G.; Lagace´,
L.; LaPlante, S.; Narjes, H.; Poupart, M.-A.; Rancourt, J .;
Sentjens, R.; St George, R.; Simoneau, B.; Steinmann, G.;
Thibeault, D.; Tsantrizos, Y.; Weldon, S.; Yong, C.-L.; Llina`s-
Brunet, M. An NS3 Protease Inhibitor with Antiviral Effects in
Humans Infected with Hepatitis C Virus. Nature 2003, 426,
186-189. (b) Llina`s-Brunet, M.; Bailey, M.; Bolger, G.; Brochu,
C.; Faucher, A.-M.; Ferland, J ., Garneau, M.; Ghiro, E.; Gorys,
V.; Grand-Maˆıtre, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard,
F.; Poirier, M.; Rhe´aume, M.; Tsantrizos, Y.; Lamarre, D.
Structure-Activity Study on
a Novel Series of Macrocyclic
Inhibitors of the Hepatitis C Virus NS3 Protease Leading to the
Discovery of BILN 2061. J . Med. Chem. 2004, 47, 1605-1608.
(5) (a) Love, R. A.; Parge, H. E.; Wickersham, J . A.; Hostomsky, Z.;
Habuka, N.; Moomaw, E. W.; Adachi, T.; Hostomska, Z. The
Crystal Structure of Hepatitis C Virus NS3 Proteinase Reveals
a Trypsin-like fold and a Structural Zinc Binding Site. Cell 1996,
87, 331-342. (b) Kim, J . L.; Morgenstern, K. A.; Lin, C.; Fox,
T.; Dwyer, M. D.; Landro, J . A.; Chambers, S. P.; Markland, W.;
Lepre, C. A.; O’Malley, E. T.; Harbeson, S. L.; Rice, C. M.;
Murcko, M. A.; Caron, P. R.; Thomson, J . A. Crystal Structure
of the Hepatitis C Virus NS3 Protease Domain Complexed with
(16) Dutta, A. S.; Giles, M.; Gormley, J .; Williams, J .; Kusner, E.
Inhibitors of Human Leukocyte Elastase. Peptides Incorporating
an R-Azanorvaline Residue or a Thiomethylene Linkage in Place
of a Peptide Bond. J . Chem. Soc., Perkin Trans. 1 1987, 111-
120.
(17) Gassman, J .; Magrath, J . An Active-Site Titrant for Chymot-
rypsin, and Evidence that Azapeptide Ester are less Susceptible
to Nucleophilic Attack than Ordinary Esters. Bioorg., Med.
Chem. Lett. 1996, 6, 1771-1774.