10.1002/chem.201900799
Chemistry - A European Journal
FULL PAPER
[13] M. Ding, G. E. Cutsail III, D. Aravena, M. Amoza, M. Rouzières, P.
Dechambenoit, Y. Losovyj, M. Pink, E. Ruiz, R. Clérac and J. M. Smith,
Chem. Sci., 2016, 7, 6132-6140.
relaxation pathways that are available to paramagnetic
compounds make such analyses critical for understanding
magnetization dynamics, e.g. diagnosing SMM behavior.
[14] D. N. Hendrickson, Y. S. Sohn and H. B. Gray, Inorg. Chem., 1971, 10,
1559-1563.
[15] Y. S. Sohn, D. N. Hendrickson and H. B. Gray, J. Am. Chem. Soc., 1970,
92, 3233-3234.
Acknowledgements
[16] R. Prins, Mol. Phys., 1970, 19, 603-620.
[17] R. Prins and F. J. Reinders, J. Am. Chem. Soc., 1969, 91, 4929-4931.
[18] K. N. Shrivastava, Phys. Stat. Sol. A, 1983, 117, 437-458.
[19] J. H. Van Vleck, Phys. Rev., 1940, 57, 426-447.
M.D., A.K.H. and J.M.S. acknowledge funding from Indiana
University and the NSF (CHE-1112299). R.C. and M.R. thank the
University of Bordeaux, the Conseil Regional de Nouvelle
Aquitaine, the CNRS, the GdR MCM-2 and the MOLSPIN COST
action CA15128 for financial support. T.J.O., W.A.H., and M.P.S.
thank the National Science Foundation (CHE-1363274) for
support. M.A and E.R. thank Spanish Ministerio de Economía y
Competitividad (MINECO) for the grant PGC2018-093863-B-C21
and the computer resources, technical expertise and assistance
provided by the CSUC. E.R. acknowledges Generalitat de
Catalunya for an ICREA Academia award. M. A. thanks the
Spanish "Ministerio de Educación y Formación Profesional for a
graduate FPU fellowship. We thank Prof. Brian M. Hoffman,
Northwestern University, for use of the low temperature X- and Q-
band EPR spectrometers, which is supported by the NIH (GM
111097 to B.M.H.).
[20] M. Abraham, H. H. Klauß, W. Wagener, F. J. Litterst, A. Hofmann and M.
Herberhold, Hyperfine Interact., 1999, 120/121, 253-256.
[21] R. H. Herber, I. Felner and I. Nowik, Hyperfine Interact., 2016, 237, 100.
[22] I. Nowik and R. H. Herber, Inorg. Chim. Acta, 2000, 310, 191-195.
[23] H. Schottenberger, K. Wurst, U. J. Griesser, R. K. R. Jetti, G. Laus, R. H.
Herber and I. Nowik, J. Am. Chem. Soc., 2005, 127, 6795-6801.
[24] M. Reiners, D. Baabe, P. Schweyen, M. Freytag, P. G. Jones and M. D.
Walter, Eur. J. Inorg. Chem., 2017, 388-400.
[25] A. Houlton, R. A. Brown, J. R. Miller, R. M. G. Roberts, J. Silver and M.
Thomas, J. Organomet. Chem., 1992, 431, C17-C20.
[26] P. Zanello, A. Cinquantini, S. Mangani, G. Opromolla, L. Pardi, C. Janiak
and M. D. Rausch, J. Organomet. Chem., 1994, 471, 171-177.
[27] I. Chávez, A. Alvarez-Carena, E. Molins, A. Roig, W. Maniukiewicz, A.
Arancibia, V. Arancibia, H. Brand and J. Manuel Manrıquez, J.
́
Organomet. Chem., 2000, 601, 126-132.
[28] J. W. Chambers, A. J. Baskar, S. G. Bott, J. L. Atwood and M. D. Rausch,
Organometallics, 1986, 5, 1635-1641.
Keywords: metallocences • magnetic properties • electronic
[29] H. Schumann, C. Janiak, R. D. Köhn, J. Loebel and A. Dietrich, J.
Organomet. Chem., 1989, 365, 137-150.
structure • ab initio calculations
[30] C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Cryst.,
2016, B72, 171-179.
[1]
[2]
T. J. Kealy and P. L. Pauson, Nature, 1951, 168, 1039-1040.
I. R. Butler and D. Thomas, in Comprehensive Organometallic Chemistry
III, Elsevier, 2007, pp. 185-220.
[31] K. D. Warren, Inorg. Chem., 1974, 13, 1317-1324.
[32] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of
Transition Ions, Dover, New York, 1986.
[3]
[4]
[5]
[6]
[7]
Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications,
(Eds.: L.-X. Dai and X.-L. Hou), Wiley-VCH, Weinheim, 2010.
Ferrocenes: Ligands, Materials and Biomolecules, (Ed.: P. Štěpnička)
John Wiley & Sons., New York, 2008.
[33] F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P.
Neogrády, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L.
Serrano-Andrés, M. Urban, V. Veryazov and R. Lindh, J. Comput. Chem.,
2010, 31, 224-247.
Ferrocenes: Compounds, Properties and Applications, (Ed: E. S. Philips ),
Nova Science Publishers, New York, 2011.
[34] G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V.
Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady
and L. Seijo, Comput. Mater. Sci., 2003, 28, 222-239.
M. Malischewski, K. Seppelt, M. Adelhardt, J. Sutter and K. Meyer,
Science, 2016, 353, 678-682.
[35] V. Veryazov, P.-O. Widmark, L. Serrano-Andrés, R. Lindh and B. O.
Roos, Int. J. Quantum Chem., 2004, 100, 626-635.
For both classes of complex, the energy separation of between the a1g
(a1) and lower lying e2g (e) levels is small and may have a different
relative energy ordering, depending on the metal and oxidation state. For
metallocenes, see for example, T.A. Jackson, J. Krzystek, A. Ozarowski,
G.B. Wijeratne, B.F. Wicker, D.J. Mindiola and J. Telser, Organometallics
2012, 31, 8265-8274 and T.A. Jackson, J. Krzystek, A. Ozarowski, G.B.
Wijeratne, B.F. Wicker, D.J. Mindiola and J. Telser, Organometallics
2014, 33, 1325-1325 (addendum). For pseudotetrahedral complexes,
see for example, L. Bucinsky, M. Breza, W.-T. Lee, A.K. Hickey, D.A.
Dickie, I. Nieto, J.A. DeGayner, T.D. Harris, K. Meyer, J. Krzystek, A.
Ozarowski, J. Nehrkorn, A. Schnegg, J. Holldack, R.H. Heber, J. Telser,
and J.M. Smith, Inorg. Chem. 2017, 56, 4751-4768.
[36] B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov and P.-O. Widmark,
J. Phys. Chem. A., 2004, 108, 2851-2858.
[37] B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, P.-O. Widmark and
A. C. Borin, J. Phys. Chem. A., 2008, 112, 11431-11435.
[38] P.-O. Widmark, P.-Å. Malmqvist and B. O. Roos, Theor. Chim. Acta,
1990, 77, 291-306.
[39] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
[40] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, e1327.
[41] A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-
2577.
[42] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
[43] M. E. Switzer, R. Wang, M. F. Rettig and A. H. Maki, J. Am. Chem. Soc.,
1974, 96, 7669-7674.
[8]
[9]
M. Ding, M. Rouzières, Y. Losovyj, M. Pink, R. Clérac and J. M. Smith,
Inorg. Chem., 2015, 54, 9075-9080.
H.-J. Lin, D. Siretanu, D. A. Dickie, D. Subedi, J. J. Scepaniak, D. Mitcov,
R. Clérac and J. M. Smith, J. Am. Chem. Soc., 2014, 136, 13326-13332.
[44] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J. P. Malrieu, J.
Chem. Phys., 2001, 114, 10252-10264.
[10] C. Mathonière, H.-J. Lin, D. Siretanu, R. Clérac and J. M. Smith, J. Am.
Chem. Soc., 2013, 135, 19083-19086.
[45] S. Gómez-Coca, D. Aravena, R. Morales and E. Ruiz, Coord. Chem.
Rev., 2015, 289-290, 379-392.
[11] J. J. Scepaniak, T. D. Harris, C. S. Vogel, J. r. Sutter, K. Meyer and J. M.
Smith, J. Am. Chem. Soc., 2011, 133, 3824-3827.
[46] S. Gomez-Coca, E. Cremades, N. Aliaga-Alcalde and E. Ruiz, J. Am.
Chem. Soc., 2013, 135, 7010-7018.
[12] G. E. Cutsail III, B. W. Stein, D. Subedi, J. M. Smith, M. L. Kirk and B. M.
Hoffman, J. Am. Chem. Soc., 2014, 136, 12323-12336.
[47] D. Aravena, J. Phys. Chem. Lett., 2018, 9, 5327-5333.
[48] A. Singh and K. N. Shrivastava, Phys. Stat. Sol. B., 1979, 95, 273-277.
This article is protected by copyright. All rights reserved.