are categorized into conjugated and nonconjugated biradicals,
and the former is further divided into Kekule´ and non-Kekule´
systems.9 In contrast to a large number of investigations for
non-Kekule´ and nonconjugated biradicals, the electronic
structure of singlet biradicals with Kekule´ structures has been
less thoroughly examined. Although the most extensive
studies in the Kekule´ singlet biradical have been performed
on Chichibabin’s hydrocarbon,10 the potential high reactivity
and flexible molecular framework make a definitive elec-
tronic structure still open for discussion. Recently, we have
prepared and characterized a stable phenalenyl-based11
Kekule´ singlet biradical 1b with a rigid structure, and have
clarified a prominent feature of strong intermolecular spin-
spin interactions.12
Herein, we will report the synthesis and single-molecular
electronic structure of a novel Kekule´ polycyclic hydrocarbon
with substantial biradical character. Our newly designed
molecule 2 has a naphthoquinoid structure along with two
phenalenyl rings. The singlet biradical index y of 2 is
expected to be larger than that of 1 (y of 1a ) 30%), because
two benzene rings appear in the biradical resonance structure
2′ in contrast to only one in 1. The CASSCF(2,2)/6-31G//
RB3LYP/6-31G** calculation of 2a gave the LUMO oc-
cupation number of 0.504, from which the y value was
determined to be 50%, according to the NOON (natural
orbital occupation number) analysis.13 Spin density distribu-
tion was estimated by using a broken-symmetry (BS)
Figure 1. Phenalenyl-based singlet biradicals.
UB3LYP/6-31G** method, which indicated large spin
density on two phenalenyl rings with antiparallel spins
retaining the characteristic spin distribution pattern of phen-
alenyl radical (Figure 2). Thus the electronic structure of 2
in a ground state is best represented by the resonance of
Kekule´ and biradical forms as shown in Figure 1.
(2) (a) Montgomery, L. K.; Huffman, J. C.; Jurczak, E. A.; Grendze, M.
P. J. Am. Chem. Soc. 1986, 108, 6004-6011. (b) Rajca, A.; Rajca, S. J.
Am. Chem. Soc. 1996, 118, 8121-8126.
(3) (a) Ullman, E. F.; Osiecki, J. H.; Boocock, D. G. B.; Darcy, R. J.
Am. Chem. Soc. 1972, 94, 7049-7059. (b) Alies, F.; Luneau, D.; Laugier,
J.; Rey, P. J. Phys. Chem. 1993, 97, 2922-2925. (c) Frank, N. L.; Cle´rac,
R.; Sutter, J.-P.; Daro, N.; Kahn, O.; Coulon, C.; Green, M. T.; Golhen, S.;
Ouahab, L. J. Am. Chem. Soc. 2000, 122, 2053-2061. (d) Ziessel, R.; Stroh,
C.; Heise, H.; Ko¨hler, F. H.; Turek, P.; Claiser, N.; Souhassou, M.; Lecomte,
C. J. Am. Chem. Soc. 2004, 126, 12604-12613.
(4) Kanno, F.; Inoue, K.; Koga, N.; Iwamura, H. J. Am. Chem. Soc. 1993,
115, 847-850.
(5) (a) Brook, D. J. R.; Fox, H. H.; Lynch, V.; Fox, M. A. J. Phys. Chem.
1996, 100, 2066-2071. (b) Brook, D. J. R.; Yee, G. T. J. Org. Chem. 2006,
71, 4889-4895.
(6) (a) Sugimoto, T.; Sakaguchi, M.; Ando, H.; Tanaka, T.; Yoshida,
Z.; Yamauchi, J.; Kai, Y.; Kanehisa, N.; Kasai, N. J. Am. Chem. Soc. 1992,
114, 1893-1895. (b) Shultz, D. A.; Boal, A. K.; Farmer, G. T. J. Am. Chem.
Soc. 1997, 119, 3846-3847. (c) Rebmann, A.; Zhou, J.; Schuler, P.; Rieker
A.; Stegmann, H. B. J. Chem. Soc., Perkin Trans. 2 1997, 1615-1617.
(7) Shultz, D. A.; Kumar, R. K. J. Am. Chem. Soc. 2001, 123, 6431-
6432.
(8) Kikuchi, A.; Ito, H.; Abe, J. J. Phys. Chem. B 2005, 109, 19448-
19453.
(9) Borden, W. T. In Diradicals; Borden, W. T., Ed.; Wiley: New York,
1982; in preface, which indicates biradicals include carbenes, non-
conjugated, conjugated non-Kekule´, and anti-aromatic. We used the term
“conjugated Kekule´” instead of “anti-aromatic” for wider application of
the categorization.
(10) Platz, M. S. In Diradicals; Borden, W. T., Ed.; Wiley: New York,
1982; pp 201-209. Reference 2a also summarizes the results of investiga-
tions.
Figure 2. HOMO, LUMO, and spin density of 2a. Red and blue
surfaces represent positive and negative signs of molecular orbitals
calculated with a RB3LYP/6-31G** method, respectively. Light
blue and light red surfaces represent R and â spin densities,
respectively.
(11) Our recent works of the phenalenyl system: (a) Morita, Y.; Aoki,
T.; Fukui, K.; Nakazawa, S.; Tamaki, K.; Suzuki, S.; Fuyuhiro, A.;
Yamamoto, K.; Sato, K.; Shiomi, D.; Naito, A.; Takui, T.; Nakasuji, K.
Angew. Chem., Int. Ed. 2002, 41, 1793-1796. (b) Nishida, S.; Morita, Y.;
Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Angew. Chem.,
Int. Ed. 2005, 44, 7277-7280. (c) Suzuki, S.; Morita, Y.; Fukui, K.; Sato,
K.; Shiomi, D.; Takui, T.; Nakasuji, K. J. Am. Chem. Soc. 2006, 128, 2530-
2531.
Because most polycyclic aromatic compounds suffer from
low solubility, we have decided to introduce phenyl and tert-
butyl substituents on the rings of 2a. The synthetic procedure
for the derivative 2b is shown in Scheme 1. The starting
(12) Kubo, T.; Shimizu, A.; Sakamoto, M.; Uruichi, M.; Yakushi, K.;
Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Morita, Y.; Nakasuji, K.
Angew. Chem., Int. Ed. 2005, 44, 6564-6568.
(13) (a) Do¨hnert, D.; Koutecky´, J. J. Am. Chem. Soc. 1980, 102, 1789-
1796. (b) Jung, Y.; Head-Gordon, M. ChemPhysChem 2003, 4, 522-525.
For the calculation details of 2a, see the Supporting Information.
82
Org. Lett., Vol. 9, No. 1, 2007