Page 7 of 9
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
(2) (a) Schmitt, E.; Schiffers, I.; Bolm, C. Tetrahedron Lett. 2009,
50, 3185–3188. (b) Park, S. Y.; Hwang, I.-S.; Lee, H.-J.; Song, C. E.
Nat. Commun. 2017, 8, 14877.
catalysis
iminophosphorane 1g.
of
the
L-cyclohexylglycine-derived
chiral
While the pKa balance in the
intermediary formed aminophosphonium enediolate 1ꞏHꞏ[3−H]
would urge a pseudo-intramolecular proton transfer to liberate
1 and α-hydroxy thioester 3, the intermolecular carbon-carbon
bond formation proceeded predominantly over the protonation
in a highly stereoselective manner when 1g was employed as a
catalyst. The unique and relevant features of 1g for precisely
dictating the reaction pathway and the stereochemical outcome
were dissected by extensive quantum analysis, revealing the
critical importance of cyclohexyl substituents in the
simultaneous control of the multiple selectivities. These results
shed light on the previously unexplored possibility of utilizing
the base-catalyzed hemithioacetal isomerization as a tool for the
generation of highly basic enolates by the judicious choice of a
catalyst capable of kinetically suppressing the rapid protonation
and directing the subsequent stereoselective bond-forming
reactions. This significant implication will stimulate the
development of new catalyst-controlled strategies for achieving
otherwise difficult transformations under simple acid-base
catalysis.
(3) (a) de Lucchi, O.; Miotti, U.; Modena, G. Org. React. 1991, 40,
157–405. (b) Padwa, A.; Gunn, Jr., D. E.; Osterhout, M. H. Synthesis
1997, 1353–1377. (c) Padwa, A.; Bur, S. K.; Danca, D. M.; Ginn, J. D.;
Lynch, S. M. Synlett 2002, 851–862. (d) Bur, S. K.; Padwa, A. Chem.
Rev. 2004, 104, 2401–2432.
(4) (a) Iriuchijima, S.; Maniwa, K.; Tsuchihashi, G.-I. J. Am. Chem.
Soc. 1975, 97, 596–599. (b) Russell, G. A.; Mikol, G. J. J. Am. Chem.
Soc. 1966, 88, 5498–5504. (c) Capitta, F.; Melis, N.; Secci, F.;
Romanazzi, G.; Frongia, A. J. Sulfur Chem. 2014, 35, 649–660.
(5) (a) Mimoto, T.; Terashima, K.; Nojima, S.; Takaku, H.;
Nakayama, M.; Shintani, M.; Yamaoka, T.; Hayashi, H. Bioorg. Med.
Chem. 2004, 12, 281–293. (b) Suzuki, T.; Honda, Y.; Izawa, K.;
Williams, R. M. J. Org. Chem. 2005, 70, 7317–7323. (c) Capitta, F.;
Frongia, A.; Piras, P. P.; Pitzanti, P. Adv. Synth. Catal. 2010, 352,
2955–2960.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) (a) Corbett, M. T.; Uraguchi, D.; Ooi, T.; Johnson, J. S. Angew.
Chem. Int. Ed. 2012, 51, 4685–4689. (b) Horwitz, M. A.; Tanaka, N.;
Yokosaka, T.; Uraguchi, D.; Johnson, J. S.; Ooi, T. Chem. Sci. 2015, 6,
6086–6090.
(7) (a) Uraguchi, D.; Ooi, T. J. Synth. Org. Chem. Jpn. 2010, 68,
1185–1194. (b) Uraguchi, D.; Nakamura, S.; Ooi, T. Angew. Chem. Int.
Ed. 2010, 49, 7562–7565. (c) Uraguchi, D.; Yoshioka, K.; Ueki, Y.;
Ooi, T. J. Am. Chem. Soc. 2012, 134, 19370–19373. (d) Uraguchi, D.;
Tsutsumi, R.; Ooi, T. J. Am. Chem. Soc. 2013, 135, 8161–8164. (e)
Uraguchi, D.; Yamada, K.; Ooi, T. Angew. Chem. Int. Ed. 2015, 54,
9954–9957. (f) Uraguchi, D.; Yoshioka, K.; Ooi, T. Nat. Commun.
2017, 8, 14793. (g) Uraguchi, D.; Ito, T.; Kimura, Y.; Nobori, Y.; Sato,
M.; Ooi, T. Bull. Chem. Soc. Jpn. 2017, 90, 546–555. (h) Yoshioka, K.;
Yamada, K.; Uraguchi, D.; Ooi, T. Chem. Commun. 2017, 53, 5495–
5498. (i) Tanaka, N.; Tsutsumi, R.; Uraguchi, D.; Ooi, T. Chem.
Commun. 2017, 53, 6999–7002. (j) Uraguchi, D.; Kawai, Y.; Sasaki,
H.; Yamada, K.; Ooi, T. Chem. Lett. 2018, 47, doi: 10.1246/cl.180031.
(k) Uraguchi, D.; Shibazaki, R.; Tanaka, N.; Yamada, K.; Yoshioka,
K.; Ooi, T. Angew. Chem. Int. Ed. 2018, 57, doi:
10.1002/anie.201800057.
(8) For a review on organic base catalysis, see: Palomo, C.; Oiarbide,
M.; López, R. Chem. Soc. Rev. 2009, 38, 632–653.
(9) For reviews on phosphonium salt catalyses, see: (a) Werner, T.
Adv. Synth. Catal. 2009, 351, 1469–1481. (b) Enders, D.; Nguyen, T.
V. Org. Biomol. Chem. 2012, 10, 5327–5331.
(10) Triaminoiminophosphoranes are known as a P1-phosphazenes,
which was developed by Schwesinger, see: (a) Schwesinger, R.;
Schlemper, H. Angew. Chem. Int. Ed. Engl. 1987, 26, 1167–1169. For
a review, see: (b) Ishikawa, T. Superbases for Organic Synthesis:
Guanidines, Amidines, Phosphazenes and Related Organocatalysts;
John Wiley & Sons: West Sussex, U.K., 2009.
(11) For a review on chiral iminophosphorane catalysis, see:
Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht,
Ł. Chem. Eur. J. 2015, 21, 10268–10277.
(12) (a) Takeda, T.; Terada, M. J. Am. Chem. Soc. 2013, 135, 15306–
15309. (b) Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. J. Am. Chem.
Soc. 2013, 135, 16348–16351. (c) Gao, X.; Han, J.; Wang, L. Org. Lett.
2015, 17, 4596–4599. (d) Kondoh, A.; Oishi, M.; Takeda, T.; Terada,
M. Angew. Chem. Int. Ed. 2015, 54, 15836–15839. (e) Farley, A. J. M.;
Sandford, C.; Dixon, D. J. J. Am. Chem. Soc. 2015, 137, 15992–15995.
(f) Robertson, G. P.; Farley, A. J. M.; Dixon, D. J. Synlett 2016, 27,
21–24. (g) Horwitz, M. A.; Zavesky, B. P.; Martinez-Alvarado, J. I.;
Johnson, J. S. Org. Lett. 2016, 18, 36–39. (h) Gao, X.; Han, J.; Wang,
L. Org. Chem. Front. 2016, 3, 656–660. (i) Takeda, T.; Kondoh, A.;
Terada, M. Angew. Chem. Int. Ed. 2016, 55, 4734–4737. (j) Yang, J.;
Farley, A. J. M.; Dixon, D. J. Chem. Sci. 2017, 8, 606–610.
(13) The hydrochloric acid salt of 1a (P-VIPꞏCl) is commercially
available from Wako pure chemical industries (Cat. No. 226-02381).
(14) Upon treatment of 3a with 10 mol% of 1d in the presence of 4a
in diethyl ether, neither formation of 5a nor consumption of 3a was
detected even at 0 °C. This indicated that the observed rigorous
chemoselectivity was kinetically established.
ASSOCIATED CONTENT
*Supporting Information
The Supporting Informations are available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.0000000.
Experiment details, spectral data, copies of 1H and 13C
NMR spectra, and copies of HPLC traces (PDF)
Computational details and discussion (PDF).
Cartesian coordinates and energies (PDF).
X-ray crystallographic data for 1eꞏHCl and 5a (CIF)
AUTHOR INFORMATION
Corresponding Author
*tooi@chembio.nagoya-u.ac.jp
ORCID
Takashi Ooi: 0000-0003-2332-0472
Daisuke Uraguchi: 0000-0002-6584-797X
Makoto Sato: 0000-0001-8903-6226
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support was provided by CREST-JST (JPMJCR13L2:
13418441), Program for Leading Graduate Schools "Integrative
Graduate Education and Research Program in Green Natural
Sciences" in Nagoya University, and Grants of JSPS for Scientific
Research. KY acknowledges JSPS for financial support. The
computations were performed using Research Center for
Computational Science, Okazaki, Japan.
REFERENCES
(1) (a) Hall, S. S.; Doweyko, A. M.; Jordan, F. J. Am. Chem. Soc.
1976, 98, 7460–7461. (b) Hall, S. S.; Doweyko, A. M.; Jordan, F. J.
Am. Chem. Soc. 1978, 100, 5934–5939. (c) Shinkai, S.; Yamashita, T.;
Kusano, Y.; Manabe, O. Chem. Lett. 1979, 1323–1326. (d) Shinkai, S.;
Yamashita, T.; Kusano, Y.; Manabe, O. J. Am. Chem. Soc. 1981, 103,
2070–2074. (e) Landro, J. A.; Brush, E. J.; Kozarich, J. W.
Biochemistry 1992, 31, 6069–6077. (f) Ridderström, M.; Cameron, A.
D.; Jones, T. A.; Mannervik, B. J. Biol. Chem. 1998, 273, 21623–21628.
(g) Thornalley, P. J. Biochem. Soc. Trans. 2003, 31, 1343–1348.
ACS Paragon Plus Environment