720
V.T. Kasumov et al. / Spectrochimica Acta Part A 62 (2005) 716–720
[2] (a) R.D. Jones, D.A. Summerville, F. Basolo, Chem. Rev. 79 (1979)
We found one-electron transfer for the first oxidation peak
139;
by using a digital coulometer. Since the integrated area under
the second oxidation peak is two times larger than the area
under the fist anodic peak, 2-e− transfer was assigned for the
second anodic peak, as well. This experimental fact indicates
that the ligand-localized oxidation takes place in both coor-
dinated salicylaldimine fragments. More positive potentials
are obtained as the methylene group chain decreased from 4
to 2. This is in well agreement with the observed a red shift in
the electronic spectra of NiLx in DMF (Table 4). It is known
that in increasing length of the bridging N (CH2)x N chain
(x = 2–4) is expected initially to increase steric strain in the
tetrahedral geometry [7a]. For NiLx, increasing n (n = 2–4)
causes a red shift in the absorption band near 600 nm, inter-
preted in terms of effective weakening of ligand field strength
[16].
(b) E.C. Niederhoffer, J.H. Timmons, A.E. Martel, Chem. Rev. 84
(1984) 137.
[3] (a) L.J. Klein, K.S. Alleman, D.G. Peters, J.A. Karty, J.P. Reilly, J.
Electroanal. Chem. 481 (2000) 24;
(b) A.A. Isse, A. Cenno, E. Vianello, Electrochim. Acta. 47 (1992)
113.
[4] (a) W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, J. Am.
Chem. Soc. 112 (1990) 2801;
(b) R.G. Konsler, J. Karl, E.N. Jacobsen, J. Am. Chem. Soc. 120
(1998) 10780;
(c) L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1998) 85;
(d) T. Katsuki, Coord. Chem. Rev. 140 (1995) 159.
[5] A. Berkessel, M. Bolte, C. Griesinger, G. Huttner, T. Neumann, H.
Schwalbe, T. Schwenkeris, Angew. Chem. Int. Ed. Engl. 32 (1993)
1777.
[6] R. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett.
31 (1990) 7345.
[7] (a) S.J. Gruber, C.M. Harris, E. Sinn, J. Inorg. Nucl. Chem. 30
(1968) 1805;
(b) E. Sinn, Coord. Chem. Rev. 5 (1970) 313;
(c) J.P. Costes, F. Dahan, A. Dupuis, Inorg. Chem. 39 (2000) 165,
and references cited therein.
4. Conclusion
[8] (a) P.H. Aubert, A. Neudeck, L. Dunsch, P. Audebert, P. Capdevielle,
M. Maumy, J. Electroanal. Chem. 470 (1999) 77;
(b) L. Mao, K. Yamamato, W. Zhou, L. Jin, Electroanalysis 12 (2000)
72.
[9] (a) E.G. Ja¨ger, K. Schunmann, H. Go¨rls, Inorg. Chim. Acta 255
(1997) 295;
The reactivity and coordination modes of H2Lx are simi-
lar to those exhibited by non-tertbutylated salen type ligands
when they are treated with Ni(acet)2 in the presence of Et3N.
TheelectrochemicalbehavioursofNiLx aresubsequentlydif-
ferent from those reported for analogous salen type Ni(II)
complexes with polymethylene bridges. This features seems
to be due to the steric requirements of the tert-butyl groups
on the 3,3ꢀ-positions of the salisylic fragments.
(b) K. Chichak, U. Jacquemard, N.R. Branda, Eur. J. Inorg. Chem.
(2002) 357.
˙
[10] V.T. Kasumov, A.A. Medjidov, I.A. Golubeva, O.V. Shubina, R.Z.
Rzaev, Russ. J. Coord. Chem. 17 (1991) 1698.
[11] P.W. Selwood, Magnetochemistry, Interscience Publishers, New
York, 1956.
[12] G.C. Percy, D.A. Thornton, J. Inorg. Nucl. Chem. 34 (1972)
3357.
Acknowledgement
[13] C. Fraser, B. Bosnich, Inorg. Chem. 33 (1994) 338.
[14] P.W. Alexander, R.J. Sleet, Aust. J. Chem. 23 (1970) 1183.
[15] (a) G. Maki, J. Phys. Chem. 28 (1958) 651;
(b) H. Gary, C.J. Ballhausen, J. Am. Chem. Soc. 85 (1963) 260.
[16] (a) R.H. Holm, J. Am. Chem. Soc. 82 (1960) 5632;
(b) W.C. Hoyt, G.W. Everett, J. Inorg. Chem. 8 (1969) 2013.
[17] (a) J. Csaszar, J. Balog, Acta Chim. Acad. Sci. Hung. 87 (1975)
331;
Financial support by the Harran University Research Fund
is gratefully acknowledged.
References
(b) M. Calvin, C.H. Barkelew, J. Am. Chem. Soc. 68 (1946)
2267.
[18] A.E.M.M. Ramadan, W. Sawodny, H.Y.F. El-Baradie, M. Gaber,
Trans. Met. Chem. 22 (1997) 211.
[1] (a) R.H. Holm, G.W. Everett, A. Chakravorty, Prog. Inorg. Chem. 7
(1966) 83;
(b) M.D. Hobday, T.D. Smith, Coord. Chem. Rev. 9 (1972) 311.