1660, 1247, 1157, 1119, 968, 862, 849 cm21. NMR (CDCl3, 25 °C): 1H, d
0.90 [d, 9H, CH3, J(HP) 1.32 Hz], 6.41 [dt, 1H, PCH, J(HP) 4.48 J(HP2)
0.75 Hz], 7.32–7.68 (m, 30H, PPh). 31P{1H}, d 462.7 [t, PNC, 1 P, J(P2P) 13
Hz], 33.1 [d, 2 P, PPh3, J(PP2) 14 Hz]. FABMS: m/z (%) = 883 (2) [M]+,
853 (3) [M 2 CO]+, 781 (19) [M 2 PCHCMe3]+, 755 (6) [M 2 I]+, 654 (15)
[M 2 I 2 PCHCMe3]+, 625 (14) [M 2 CO 2 I 2 PCHCMe3]+. 4: IR
(CH2Cl2): 1940 [n(CO)] cm21. (Nujol): 1934 [n(CO)], 1718, 1311, 1263,
1089vs, 971, 931, 852 cm21. NMR (CDCl3, 25 °C): 1H, d 0.70, 0.90 (s 3
2, 9H 3 2, CH3), 6.83 [br d, 1H, PCH, J(PH) 12.6 Hz], 7.33, 7.66 (m 3 2,
30H, Ph]. 31P{1H}, d 578.9 (br s, 1 P), 111.9 [t, 1 P, J(PP) 19], 21.35 [dd,
2 P, J(PP) 12, 18 Hz] 13C{1H}: 226.1 [br d, PNCHR, J(PC) 68.0], 185.7 (m,
OsCO), 134.6 [t, C3,5 of Ph, J(P2C) 4.4], 133.3 [t, C1 of Ph, J(P2C) 25.9],
129.9 (s, C4 of Ph) 127.8 [t, C2,6 of Ph, J(P2C) 4.9], 48.0 (br s, P2CCMe3),
36.0 [d, CHCMe3, J(PC) 4.3], 30.5 [d, CH3, J(PC) 11.9 Hz], 29.8 (br s CH3).
NB: the neopentylidyne carbon resonance was not unambiguously identi-
fied and possibly lies beneath the phosphine resonances. FABMS: m/z (%)
= 999 (7) [M + H2O]+, 979 (1) [M]+, 779 (3) [M 2 PCHCMe3]+, 737 (6)
[M + H2O 2 PPh3]+, 707 (2) [M + H2O 2 CO 2 PPh3]+.
1
1
[Os{k P,k PA-PNC(CMe3)P(NCHCMe3)}Cl(CO)(PPh3)2] on
the basis of spectroscopic, micro-analytical and FABMS data.†
Characteristic data pertaining to the ‘OsCl(CO)(PPh3)2’ unit are
unremarkable, with interest focusing on those associated with
the novel metallacycle: Two But chemical environments follow
from the appearance of two singlet resonances in the 1H NMR
spectrum (d 0.90, 0.70) in addition to a doublet resonance at d
6.83 [2J(PH) 12.6 Hz] corresponding to the vinylic (neopentyli-
dene) proton. The 31P NMR spectrum consists of three
resonances: the two phosphine ligands give rise to a double-
doublet resonance [d 21.35, J(PP) 12, 18 Hz] confirming their
mutually trans disposition, straddling the molecular symmetry
plane; the phospha-alkenyl resonance appears as a slightly
broadened singlet at d 578.9 whilst the phospha-alkene
phosphorus nucleus is manifest as an apparent triplet at d 111.9
[J(PP) 19 Hz], indicating that the net coupling between the two
phosphorus nuclei of the metallacycle is negligible. Only one
isomer is formed with respect to the osmium stereochemistry,
and since our recent structural studies of various s-P phospha-
alkene complexes suggest a moderate p-acidity,3 it seems
reasonable that it is the isomer shown (phospha-alkene trans to
p-basic chloride) which is formed.
1 R. B. Bedford, A. F. Hill and C. Jones, Angew. Chem., Int. Ed. Engl.,
1996, 35, 547; R. B. Bedford, A. F. Hill, C. Jones, A. J. P. White, D. J.
Williams and J. D. E. T. Wilton-Ely, Organometallics, 1998, 17,
4744.
The metallacycle in 4 is unique in possessing both phospha-
alkenyl and phospha-alkene ligating groups, although other
metallacyclic phospha-alkenyl complexes have been reported,
2 For a recent review on the chemistry of phospha-alkenyl complexes,
see: L. Weber, Angew. Chem., Int. Ed. Engl., 1996, 35, 271.
3 R. B. Bedford, D. E. Hibbs, A. F. Hill, M. B. Hursthouse, K. M. A.
Malik and C. Jones, Chem. Commun., 1996, 1895; R. B. Bedford, A. F.
Hill, C. Jones, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-Ely,
J. Chem. Soc., Dalton Trans., 1997, 139, 1113; R. B. Bedford, A. F. Hill,
C. Jones, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-Ely,
Chem. Commun., 1997, 179; A. F. Hill, C. Jones, A. J. P. White, D. J.
Williams and J. D. E. T. Wilton-Ely, J. Chem. Soc., Dalton Trans., 1998,
1419.
4 M. H. A. Benvenutti, N. Cebac and J. Nixon, Chem. Commun., 1997,
1327.
5 M. Schmidz, R. Go¨ller, U. Bergstra¨ßer, S. Leininger and M. Regitz, Eur.
J. Inorg. Chem., 1998, 227.
6 A. F. Hill and J. D. E. T. Wilton-Ely, J. Chem. Soc., Dalton Trans.,
1998, 3501.
7 N. W. Alcock, A. F. Hill and M. S. Roe, J. Chem. Soc., Dalton Trans.,
1990, 1737.
viz.
[Os{PNC(CF3)O}(CO)2(PPh3)2],9
[Rh{PNC(CMe3)-
CNCH2}Cl(PPri3)2],10 and the l -phospha-alkenyl complex
[Ru{P(NO)NC(CMe3)C(NO)}(CNCMe3)2(PPh3)2],11 (spectro-
scopic data of which support our formulation). The route by
which 4 is formed presumably involves a slow insertion of one
equivalent of P·CCMe3 into the osmium hydride bond to
provide transiently the phospha-alkenyl complex [Os(PNCHC-
Me3)Cl(CO)(PPh3)2], followed by a rapid insertion of a second
equivalent of phospha-alkyne into the Os–P bond and sub-
sequent metallacyclisation. It is therefore noteworthy that
treating the ruthenium complexes 2a or 2c with an excess of
phospha-alkyne fails to result in any discernible reaction. Thus
our very modest attempt to generalise what appears a simple
reaction, phospha-alkyne hydrometallation, has highlighted the
diversity of reactivity available to phospha-alkynes through
coordinative activation by transition metals.
5
8 M. C. J. Harris and A. F. Hill, J. Organomet. Chem., 1992, 438, 209;
M. C. J. Harris and A. F. Hill, Organometallics, 1991, 10, 3903.
9 D. S. Bohle, G. R. Clark, C. E. F. Rickard and W. R. Roper,
J. Organomet. Chem., 1988, 353, 355; D. S. Bohle, C. E. F. Rickard and
W. R. Roper, J. Chem. Soc., Chem. Commun., 1985, 1594.
10 P. Binger, J. Haas, A. T. Herrmann, F. Langhauser and C. Kru¨ger,
Angew. Chem., Int. Ed. Engl., 1991, 30, 310.
A. F. H. gratefully acknowledges the Leverhulme Trust and
the Royal Society for the award of a Senior Research
Fellowship. Osmium and ruthenium salts were generously
provided by Johnson Matthey Chemicals Ltd.
11 A. F. Hill, C. Jones, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-
Ely, Chem. Commun., 1998, 367.
Notes and references
† Selected data for new complexes. Satisfactory elemental microanalytical
data obtained. 2c: IR(CH2Cl2): 1936 [n(CO)] cm21. (Nujol): 1925 [n(CO)],
Communication 9/00257J
452
Chem. Commun., 1999, 451–452