1452
Organometallics 2005, 24, 1452-1457
Synthesis and Characterization of (CHdCH)3-Bridged
Heterobimetallic Ferrocene-Ruthenium Complexes
Ping Yuan,† Sheng Hua Liu,*,† Weicheng Xiong,† Jun Yin,† Guang-ao Yu,†
Ho Yung Sung,‡ Ian D. Williams,‡ and Guochen Jia‡
Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry,
Central China Normal University, Wuhan 430079, People’s Republic of China, and
Department of Chemistry, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong
Received November 30, 2004
The complex Fc(CHdCH)2CtC-TMS (Fc ) ferrocenyl) was obtained from Wittig olefination
of FcCH2PPh3Br with TMS-CtCCHdCHCHO in THF. The conjugated monometallic diene
can be desilylated to give Fc(CHdCH)2CtCH, which reacted with RuHCl(CO)(PPh3)3 to
produce Fc(CHdCH)3RuCl(CO)(PPh3)2. Treatment of the latter complex with PMe3, 4-phe-
nylpyridine (PhPy), 2,6-(Ph2PCH2)2C5H3N (PMP), and KTp (Tp ) hydridotris(pyrazolyl)-
borate) gave Fc(CHdCH)3RuCl(CO)(PMe3)3, Fc(CHdCH)3RuCl(CO)(PhPy)(PPh3)2, Fc(CHd
CH)3RuCl(CO)(PMP), and Fc(CHdCH)3RuTp(CO)(PPh3), respectively. The structures of
Fc(CHdCH)2CtCH and Fc(CHdCH)3RuCl(CO)(PMe3)3 have been confirmed by X-ray
diffraction.
Introduction
C1, C2, C3, C4, C5, C6, C8, C10, C12, C16, and C20 adducts
have been isolated.4-13 In contrast, very few studies
have been carried out with bimetallic complexes with
polyenediyl bridges, despite the fact that many conju-
gated organic materials (e.g. polyacetylenes, push/pull
stilbenes) have only sp2-hybridized carbon in their
backbones and polyacetylenes have high electrical con-
ductivity (up to 105 S cm-1) upon doping.14 Nonbranched
monodisperse π-conjugated oligoenes R(CR′dCR′′)nR (R′,
R′′ ) H, Me, R ) Ar, CHO, n ) 3, 5, ..., 11) have been
synthesized, and they have promising electronic and
Bimetallic and polymetallic complexes with conju-
gated hydrocarbon ligands bridging metal centers are
attracting considerable current interest.1,2 Bimetallic
complexes with polyynediyl bridges, M-(CtC)n-M′,
constitute the most fundamental class of carbon-based
molecular wires, and they have been proposed for
construction of nanoscale electronic devices.3 To date,
† Central China Normal University.
‡ The Hong Kong University of Science and Technology.
(1) (a) Long, N. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 21 and
references therein. (b) Bunz, U. H. F. Angew. Chem., Int. Ed. Engl.
1996, 35, 969. (c) Lotz, S.; Van Rooyen, P. H.; Meyer, R. Adv.
Organomet. Chem. 1995, 37, 219. (d) Ward, M. D. Chem. Soc. Rev.
1995, 24, 121. (e) Lang, H. Angew. Chem., Int. Ed. Engl. 1994, 33,
547. (f) Berk, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl.
1993, 32, 923. (g) Paul, F.; Lapinte, C. Coord. Chem. 1998, 178, 431.
(h) Neil, R.; Craig, A. M. Chem. Soc. Rev. 2003, 32, 96. (i) Szafert, S.;
Gladysz, J. A. Chem. Rev. 2003, 103, 4175. (j) Schwab, P. F. H.; Levin,
M. D.; Michl, J. Chem. Rev. 1999, 99, 1863. (k) Ceccon, A.; Santi, S.;
Orian, L.; Bisello, A. Coord. Chem. Rev. 2004, 248, 683. (l) Bruce, M.
I.; Low, P. J. Adv. Organomet. Chem. 2004, 50, 179.
(2) For examples of recent work, see: (a) Enriquez, A. E.; Templeton,
J. L. Organometallics 2002, 21, 852. (b) Yam, V. W. W.; Tao, C. H.;
Zhang, L.; Wong, K. M. C.; Cheung, K. K. Organometallics 2001, 20,
453. (c) Matsumi, N.; Chujo, Y.; Lavastre, O.; Dixneuf, P. H. Organo-
metallics 2001, 20, 2425. (d) Wong, W. Y.; Chol, K. H.; Lu, G. L.; Shi,
J. X.; Lai, P. Y.; Chan, S. M.; Lin, Z. Organometallics 2001, 20, 5446.
(e) Dijkstra, H. P.; Meijer, M. D.; Paul, J.; Kreiter, R.; Van Klink, G.
P. M.; Lutz, M.; Spek, A. L.; Canty, A. J.; van Koten, G. Organome-
tallics 2001, 20, 3159. (f) Le Stang, S.; Paul, F.; Lapinte, C. Organo-
metallics 2000, 19, 1035. (g) Weyland, T.; Costuas, K.; Toupet, L.;
Halet, J. F.; Lapinte, C. Organometallics 2000, 19, 4228. (h) Weyland,
T.; Ledoux, I.; Brasselet, S.; Zyss, J.; Lapinte, C. Organometallics 2000,
19, 5232. (i) MacDonald, M. A.; Puddephatt, R. J.; Yap, G. P. A.
Organometallics 2000, 19, 2194. (j) Yam, V. W. W.; Wong, K. M. C.;
Zhu, N. Y. Angew. Chem., Int. Ed. 2003, 42, 1400. (k) Jiao, H. J.;
Costuas, K.; Gladysz, J. A.; Halet, J. F.; Guillemot, M.; Toupet, L.;
Paul, F.; Lapinte, C. J. Am. Chem. Soc. 2003, 125, 9511. (l) Carre´, F.;
Devylder, N.; Dutremez, S. G.; Gue´rin, C.; Henner, B. J. L.; Jolivet,
A.; Tomberli, V. Organometallics 2003, 22, 2014. (m) Stahl, J.; Bohling,
J. C.; Bauer, E. B.; Peters, T. B.; Mohr, W.; Mart´ın-Alvarez, J. M.;
Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2002, 41, 1871. (n)
Coat, F.; Paul, F.; Lapinte, C.; Toupet, L.; Costuas, K.; Halet, J. F. J.
Orgamomet. Chem. 2003, 683, 368. (o) Belanzoni, P.; Re, N.; Sgamel-
lotti, A. J. Organomet. Chem. 2002, 656, 156.
(3) (a) Barlow, S.; O’Hare, D. Chem. Rev. 1997, 97, 637. (b)
Grosshenny, V.; Harriman, A.; Hissler, M.; Ziessel, R. Platinum Met.
Rev. 1996, 40, 26. (c) Bruce, M. I. Coord. Chem. Rev. 1997, 166, 91.
(4) Che, C. M.; Chao, H. Y.; Miskowski, V. M.; Li, Y.; Cheung, K. K.
J. Am. Chem. Soc. 2001, 123, 4895.
(5) Paul, F.; Meyer, W. E.; Toupet, I.; Jiao, H.; Gladysz, J. A.;
Lapinte, C. J. Am. Chem. Soc. 2000, 122, 9405.
(6) (a) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J. F.; Best, S. P.;
Health, G. A. J. Am. Chem. Soc. 2000, 122, 1949. (b) Bruce, M. I.; Hall,
B. C.; Kelly, B. D.; Low, P. J.; Skelton, B. W.; White, A. H. J. Chem.
Soc., Dalton Trans. 1999, 3719.
(7) Gil-Rubio, J.; Laubender, M.; Werner, H. Organometallics 2000,
19, 1365.
(8) (a) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz,
J. A. Organometallics 2001, 20, 1115. (b) Dembinski, R.; Bartik, T.;
Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem. Soc. 2000, 122,
810. (c) Brady, M.; Weng. W.; Gladysz, J. A. J. Chem. Soc., Chem.
Commun. 1994, 2665.
(9) Coate, F.; Lapinte, C. Organometallics 1996, 15, 477.
(10) (a) Peters, T. B.; Bohling, J. C.; Arif, A. M.; Gladysz, J. A.
Organometallics 1999, 18, 3261. (b) Mohr, W.; Stahl, J.; Hampel, F.;
Gladysz, J. A. Inorg. Chem. 2001, 40, 3263.
(11) (a) Sakurai, A.; Akita, M.; Moro-oka, Y. Organometallics 1999,
18, 3241. (b) Akita, M.; Chung, M. C.; Sakurai, A.; Sugimoto, S.; Terada,
M.; Tanaka, M.; Moro-oka, Y. Organometallics 1997, 16, 4882.
(12) (a) Bruce, M. I.; Ke, M.; Low, P. J.; Skelton, B. W.; White, A.
H. Organometallics 1998, 17, 3539. (b) Bruce, M. I.; Kelly, V. D.;
Skelton, B. W.; White, A. H. J. Organomet. Chem. 2000, 604, 150.
(13) Dewhurst, R. D.; Hill, A. F.; Smith, M. K. Angew. Chem., Int.
Ed. 2004, 43, 476.
(14) See for example: (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J.
Chem. Rev. 1994, 94, 195 and references therein. (b) Bredas, J. L.;
Adant, C.; Tackx, P.; Peraoons, A. Chem. Rev. 1994, 94, 243. (c)
Handbook of Conducting Polymers; Skotheim, T. A., Elsenbaumer, R.
L., Reynolds, J. R., Eds.; Dekker: New York, 1998.
10.1021/om0490637 CCC: $30.25 © 2005 American Chemical Society
Publication on Web 02/25/2005