1138 Organometallics, Vol. 18, No. 7, 1999
Crociani et al.
relative rates of nucleophilic attack at the nonequivalent
terminal allyl carbons trans to donor atoms with dif-
ferent electronic and steric properties.4c,d,5 To the best
of our knowledge, however, no quantitative kinetic data
for the allyl amination of [Pd(η3-allyl)(P-N)]+ have been
reported so far.
We therefore decided to extend these studies to the
cationic complexes [Pd(η3-allyl)(P-N)]+ containing imi-
nophosphine ligands of the (2-(diphenylphosphino)-
benzylidene)amine type in order (i) to stabilize the com-
plex toward displacement of the P-N chelate ligand by
the entering amine and (ii) to investigate the influence
of the coordinated PPh2 unit on the reaction rates. As
indicated by substitution reactions on palladium(0)
adducts,10 iminophosphines are better chelating ligands
than 2-(iminomethyl)pyridines. On the other hand, it
is well-known that the PPh2 group in P-N ligands
enhances the reactivity of the corresponding (η3-allyl)-
palladium(II) cationic complexes toward nucleophilic
attack at the allyl moiety (and particularly at the ter-
minal carbon trans to phosphorus), due to the better
π-accepting properties and higher trans influence of the
phosphino group relative to the N-donor group.11
In the present work, we have also used an asym-
metrically substituted allyl ligand (namely, the 3-meth-
yl-2-butenyl ligand) in order to gain a better under-
standing of the dynamic processes involving isomer in-
terconversion for the cationic substrates [Pd(η3-allyl)-
(P-N)]+ and of factors affecting the regiochemistry of
allylic amination.
In previous papers we described the solution behavior
of the complexes [Pd(η3-allyl)(L-L′)]+ (L-L′ ) 2-(imi-
nomethyl)pyridine6 or 2-(thiomethyl)pyridine7), the ki-
netics of nucleophilic attack at the allyl group in these
complexes by secondary and tertiary amines yielding
zerovalent compounds [Pd(η2-ol)(L-L′)] in the presence
of activated olefins (ol),7,8 and the kinetics of oxidative
allyl transfer from allylammonium cations to [Pd(η2-ol)-
(L-L′)] which regenerates the starting derivatives [Pd-
(η3-allyl)(L-L′)]+.9 While the observed dynamic pro-
cesses consist essentially of an apparent rotation of the
η3-allyl ligand around its bond axis to the metal and/or
inversion at sulfur involving exchange of the two coor-
dinating sulfur lone pairs for the 2-(thiomethyl)pyridine
ligands, the kinetic data suggest the mechanism
Resu lts a n d Discu ssion
NMR Sp ectr a a n d Solu tion Beh a vior . The 1H and
31P{1H} NMR spectroscopic data for the η3-propenyl
complexes 1a (BF4)-4a (BF4) and for the corresponding
η3-3-methyl-2-butenyl derivatives 1b(BF4)-4b(BF4) are
summarized in Table 1, while the 13C{1H} NMR results
of some selected compounds are reported in Table 2. The
configurations of the complexes are sketched in Scheme
1, along with the numbering scheme for the allylic
protons and carbons.
For the η3-3-methyl-2-butenyl derivatives, two cis and
trans isomeric structures, II and III, are possible.
However, due to the nonplanarity of the chelate six-
membered ring of these complexes, as revealed by the
X-ray structure of 4b(ClO4) (see further), the imino
carbon and the ortho-disubstituted phenyl group of the
P-N ligand lie on the same side out of the N-Pd-P
coordination plane, whereas the nitrogen substituent R
and one of the phenyl groups of the PPh2 unit are in
pseudoaxial positions on the opposite side of the N-Pd-P
coordination plane. Such an asymmetric conformation
of the chelate P-N ligand, compounded with the dif-
ferent orientations of the η3-allyl group, increases to four
the number of possible isomers for each configuration
I-III as shown in Figure 1. The isomeric species A and
The nucleophilic attack occurs at a terminal allyl carbon
of the cationic substrate at different rates, depending
on the steric and electronic properties of L-L′ and Nu,
and it is also accompanied by reversible displacement
of the L-L′ ligand by the more coordinating amines.
(3) (a) Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1988,
29, 99. (b) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.;
Yanagi, K. J . Am. Chem. Soc. 1989, 111, 6301. (c) Hayashi, T.; Kishi,
K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743. (d) Trost,
B. M.; Van Vranken, D. L. Angew. Chem., Int. Ed. Engl. 1992, 31, 228.
(e) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J . Am. Chem. Soc.
1992, 114, 9327 (f) Trost, B. M.; Van Vranken, D. L. J . Am. Chem.
Soc.1993, 115, 444. (g) Trost, B. M.; Bunt, R. C. J . Am. Chem. Soc.
1994, 116, 4089. (h) Trost, B. M.; Krueger, A. C.; Bunt, R. C.;
Zambrano, J . J . Am. Chem. Soc. 1996, 118, 6520. (i) Mori, M.; Kuroda,
S.; Zhang, C. S.; Sato, Y. J . Org. Chem. 1997, 62, 3263. (j) Uozumi, Y.;
Tanahashi, A.; Hayashi, T. J . Org. Chem. 1993, 58, 6826. (k) Yamazaki,
A.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 1021. (l) Thorey, C.;
Wilken, J .; Henin, F.; Martens, J .; Mehler, T.; Muzart, J . Tetrahedron
Lett. 1995, 36, 5527. (m) Yamazaki, A.; Achiwa, I.; Achiwa, K.
Tetrahedron: Asymmetry 1996, 7, 403.
(4) (a) von Matt, P.; Loiseleur, O.; Kock, G.; Pfaltz, A.; Lefeber, C.;
Feucht, T.; Helmchen, G. Tetrahedron: Asymmetry 1994, 5, 573. (b)
J umnah, R.; Williams, A. C.; Williams, J . M. J . Synlett 1995, 821. (c)
Togni, A.; Burckhardt, U.; Gramlich, V.; Pregosin, P. S.; Salzmann, R.
J . Am. Chem. Soc. 1996, 118, 1031. (d) Burckhardt, U.; Gramlich, V.;
Hoffmann, P.; Nesper, R.; Pregosin, P. S.; Salzmann, R.; Togni, A.
Organometallics 1996, 15, 3496. (e) Burckhardt, U.; Baumann, M.;
Togni, A. Tetrahedron: Asymmetry 1997, 8, 155.
(7) (a) Canovese, L.; Visentin, F.; Uguagliati, P.; Chessa, G.; Luc-
chini, V.; Bandoli, G. Inorg. Chim. Acta 1998, 275, 385. (b) Canovese,
L.; Visentin, F.; Uguagliati, P.; Chessa, G.; Pesce, A. J . Organomet.
Chem. 1998, 566, 61.
(8) (a) Crociani, B.; Antonaroli, S.; Di Bianca, F.; Canovese, L.;
Visentin, F.; Uguagliati, P. J . Chem. Soc., Dalton Trans. 1994, 1145.
(b) Canovese, L.; Visentin, F.; Uguagliati, P.; Di Bianca, F.; Antonaroli,
S.; Crociani, B. J . Chem. Soc., Dalton Trans. 1994, 3113. (c) Canovese,
L.; Visentin, F.; Uguagliati, P.; Crociani, B.; Di Bianca, F. Inorg. Chim.
Acta 1995, 235, 45.
(9) Canovese, L.; Visentin, F.; Uguagliati, P.; Di Bianca, F.; Fontana,
A.; Crociani, B. J . Organomet. Chem. 1996, 508, 101.
(10) Antonaroli, S.; Crociani, B. J . Organomet. Chem. 1998, 560,
137.
(11) (a) Szabo`, K. J . Organometallics 1996, 15, 1128 and references
therein. (b) Oslob, J . D.; Åkermark, B.; Helquist, P.; Norrby, P. O.
Organometallics 1997, 16, 3015 and references therein.
(5) (a) Sprinz, J .; Kiefer, M.; Helmchen, G.; Reggelin, M.; Huttner,
G.; Walter, O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 1523. (b) Baltzer,
N.; Macko, L.; Shaffner, S.; Zehnder, M. Helv. Chim. Acta 1996, 79,
803. (c) Ferna`ndez-Galan, R.; J alo`n, F. A.; Manzano, B. R.; Rodr`ıguez-
de la Fuente, J .; Vrahami, M.; J edlicka, B.; Weissensteiner, W.; J ogl,
G. Organometallics 1997, 16, 3758.
(6) Crociani, B.; Antonaroli, S.; Paci, M.; Di Bianca, F.; Canovese,
L. Organometallics 1997, 16, 384.