934 w, 919 w for dring; 838 m for d(O–C–O); 733 m for dop(C–H);
534 w, 490 w for n(M–O + M–N).
dip(C–H); 952 w for dring; 792 m for dop(C–H); 535 w, 516 w for
n(M–O + M–N).
{[Mg(ptc)(H2O)2]·1/2[Mg(H2O)6]·H2O}n, (6). The filtrate
from the reaction of Mg(NO3)2·6H2O and ptcH3 on further
evaporation afforded 6 as colorless hexagonal-shaped crystals in
~15% yield. Anal. calcd for C8H14N1O12Mg1.5: C, 27.25; H, 4.00;
N, 3.97%. Found: C, 27.28; H, 4.05; N, 4.02%. Main IR features
(cm-1, KBr pellet): 3366 vs for n(O–H); 3045 w for n(C–H); 1662
vs, 1611 s for [nas(O–C–O) + n(C C + C N)]; 1452 m for n(Car–
C); 1365 s, 1284 m for ns(O–C–O); 1108 m, 1029 m for dip(C–H);
934 w, 919 w for dring; 838 m for d(O–C–O); 733 m for dop(C–H);
534 w, 490 w for n(M–O + M–N).
Acknowledgements
We gratefully acknowledge the financial support received from the
Council of Scientific and Industrial Research, New Delhi, India
(Grant No. 1638/EMR II) and an SRF to MCD. ECS acknowl-
edges the financial support from the Spanish Government, (Grant
CTQ2006/03949BQU and Juan de la Cierva fellowship).
=
=
References
1 X.-M. Chen and M.-L. Tong, Acc. Chem. Res., 2007, 40, 162.
2 L. Han, X. Bu, Q. Zhang and P. Feng, Inorg. Chem., 2006, 45, 5736.
3 X.-M. Zhang, Coord. Chem. Rev., 2005, 249, 1201.
{Ca1.5(ptc)·2H2O}n, (7). Standard hydrothermal conditions
did not afford compound 7. A different approach was adopted for
its synthesis. In a typical experiment, 1 mmol of ptcH3 and 1 mmol
of Ca(NO3)2·4H2O and few drops of triethylamine were taken in a
10 ml of water in Teflon-lined autoclave. The autoclave was heated
under autogenous pressure to 180 ◦C for 96 h and then left to
cool to room temp. Colorless prismatic crystals were obtained in
ca. 58% yield. Anal. calcd for C8H6N1O8Ca1.5: C, 31.58; H, 1.99;
N, 4.60%. Found: C, 31.60; H, 2.04; N, 4.64%. Main IR features
(cm-1, KBr pellet): 3424 vs for n(O–H); 3063 m for n(C–H); 1624 vs
for [nas(O–C–O) + n(C C + C N)]; 1445 m for n(Car–C); 1384 m,
1356 m, 1322 s for ns(O–C–O); 1010 m for dip(C–H); 944 w, 930 w
for dring; 785 m for dop(C–H); 591 w for p(CO2); 514 w, 469 w for
n(M–O + M–N).
4 (a) K. M. Fromm, Coord. Chem. Rev., 2008, 252, 856; (b) W. Maudez,
M. Meuwly and K. M. Fromm, Chem.–Eur. J., 2007, 13, 8302; (c) S.
Fox, I. Busching, W. Barklage and H. Strasdeit, Inorg. Chem., 2007, 46,
818; (d) J. A. Rood, B. C. Noll and K. W. Henderson, Inorg. Chem., 2006,
45, 5521; (e) H. Schmidbaur, O. Kumberger and J. Riede, Inorg. Chem.,
1991, 30, 3101; (f) A. Uchtman and R. J. Jandacek, Inorg. Chem., 1980,
19, 350; (g) L. R. Nassimbeni and H. Su, J. Chem. Soc., Dalton Trans.,
2000, 349; (h) M. J. Plater, A. J. Roberts, J. Marr, E. E. Lachowski and
R. A. Howie, Chem. Commun., 1998, 797; (i) M. Westerhausen, Inorg.
Chem., 1991, 30, 90; (j) P. B. Hitchcock, M. F. Lappert, G. Lawless
and B. J. Royo, J. Chem. Soc., Chem. Commun., 1990, 1141; (k) M. J.
McCormick, K. B. Moon, S. R. Jones and T. P. Hanusa, J. Chem.
Soc., Chem. Commun., 1990, 778; (l) L. B. Cole and E. M. Holt, Inorg.
Chim. Acta, 1989, 195; (m) J. Cai, C.-H. Chen, C.-Z. Liao, X.-L. Feng
and X.-M. Chen, Acta Crystallogr., Sect. B, 2001, 57, 520; (n) A. J.
Shubnell, E. J. Kosnic and P. J. Squattrito, Inorg. Chim. Acta, 1994,
216, 101; (o) R. Murugavel, V. V. Karambelkar, G. Anantharaman
and M. G. Walawalkar, Inorg. Chem., 2000, 39, 1381; (p) Z. Fei, T. J.
Geldbach, R. Scopelliti and P. J. Dyson, Inorg. Chem., 2006, 45, 6331;
(q) S. Chadwick, U. Englich, K. Ruhlandt-Senge, C. Watson, A. E.
Bruce and M. R. M. Bruce, J. Chem. Soc., Dalton Trans., 2000, 2167;
(r) M. A. Guino-o, C. F. Campanab and K. Ruhlandt-Senge, Chem.
Commum., 2008, 1692; (s) K. T. Quisenberry, C. K. Gren, R. E. White,
T. P. Hanusa and W. W. Brennessel, Organometallics, 2007, 26, 4354;
(t) M. J. Harvey, K. T. Quisenberry, T. P. Hanusa and V. G. Young, Jr.,
Eur. J. Inorg. Chem., 2003, 3383.
=
=
{Sr1.5(ptc)·5H2O}n, (8). When Sr(NO3)2 (or SrCl2·6H2O) was
taken in place of Ca(NO3)2·4H2O keeping the reaction condition
the same as in 7, compound 8 could be isolated in ~55%
yield as colorless rectangular parallelopipeds. Anal. calcd for
C8H12N1O10.5Sr1.5: C, 22.79; H, 2.86; N, 3.32%. Found: C, 22.84;
H, 2.83; N, 3.35%. Main IR features (cm-1, KBr pellet): 3475 vs
for n(O–H); 3060 w for n(C–H); 1630 vs, 1533 s for [nas(O–C–
=
=
O) + n(C C + C N)]; 1463 m for n(Car–C); 1395 s, 1348 m for
ns(O–C–O); 1277 w, 1230 m for dip(C–H); 930 w for dring; 784 m for
dop(C–H); 550 w, 491 w, 469 w for n(M–O + M–N).
5 (a) N. S. Poonia and A. V. Bajaj, Chem. Rev., 1979, 79, 389; (b) D. E.
Fenton, in Comprehensive Coordination Chemistry, Eds. S. Wilkinson,
and R. D. Gillard, J. A. McCleverty, Pergamon, Oxford, 1987, Vol. 3,
pp. 1.
{[Ba(ptc)(H2O)][Ba(ptcH2)H2O]}n, (9). When Ba(NO3)2 (or
BaCl2·6H2O) was taken in place of Ca(NO3)2·4H2O keeping the
reaction condition the same as in 7, compound 9 could be isolated
in ~58% yield as colorless rectangular parallelopipeds. Anal. calcd
for C16H10N2O14Ba2: C, 26.36; H, 1.38; N, 3.84%. Found: C, 26.41;
H, 1.35; N, 3.89%. Main IR features (cm-1, KBr pellet): 3423 vs for
n(O–H); 3068 m for n(C–H); 1727 m for protonated carboxylate;
1642 vs, 1582 s for [nas(O–C–O) + n(C C + C N)]; 1548 m for
n(Car–C); 1440 m, 1390 m for ns(O–C–O); 1246 m, 1192 m, 1108 w
for dip(C–H); 1001 w, 942 w, 902 w for dring; 787 m for dop(C–H);
555 w for p(CO2); 520 w, 468 w for n(M–O + M–N).
6 (a) S. K. Ghosh, G. Savitha and P. K. Bharadwaj, Inorg. Chem., 2004,
43, 5495; (b) S. K. Ghosh and P. K. Bharadwaj, Eur. J. Inorg. Chem.,
2005, 43, 4886; (c) S. K. Ghosh, M. S. E. Fallah, J. Ribas and P. K.
Bharadwaj, Inorg. Chim. Acta, 2006, 359, 468; (d) S. K. Ghosh and
P. K. Bharadwaj, Inorg. Chim. Acta, 2006, 359, 1685; (e) S. K. Ghosh
and P. K. Bharadwaj, J. Che. Sci., 2005, 117, 23.
7 (a) H.-L. Gao, Y. Long, B. Ding, H.-S. Wang, P. Cheng, D.-Z. Liao
and S.-P. Yan, Inorg. Chem., 2006, 45, 481; (b) H.-L. Gao, B. Ding, Y.
Long, P. Cheng, D.-Z. Liao, S.-P. Yan and Z.-H. Jiang, Inorg. Chem.
Commun., 2005, 8, 151.
=
=
8 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordina-
tion Compounds, Wiley & Sons, New York, 5th edn., 1997.
9 S. D. Robinson and M. F. Uttley, J. Chem. Soc., Dalton Trans., 1973,
1912.
10 L. J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New
{[Dy(ptc)·3H2O]·H2O}n, (10). This was prepared in ~55%
yield as light purple rectangular parallelopipeds crystals on
hydrothermal reaction of 1 mmol of Dy(NO3)3·5H2O with 1 mmol
of the ligand under identical experimental condition as 7. Anal.
calcd for C8H10N1O10Dy1: C, 21.70; H, 2.27; N, 3.16%. Found: C,
21.68; H, 2.30; N, 3.13%. Main IR features (cm-1, KBr pellet):
3383 vs for n(O–H); 3055 w for n(C–H); 1631 m, 1645 vs, 1580 s
York, 1958.
11 J. Lu, Y. Li, K. Zhao, J.-Q. Xu, J.-H. Yu, G.-H. Li, X. Zhang, H.-Y. Bie
and T.-G. Wang, Inorg. Chem. Commun., 2004, 7, 1154.
12 R. Vaidhyanathan, S. Natarajan and C. N. R. Rao, Eur. J. Inorg. Chem.,
2003, 1675.
13 R. Vaidhyanathan, S. Natarajan and C. N. R. Rao, J. Solid State Chem.,
2002, 167, 274.
14 P. A. Prasad, S. Neeraj, S. Natarajan and C. N. R. Rao, Chem.
Commum., 2000, 1251.
=
=
for [nas(O–C–O) + n(C C + C N)]; 1447 m for n(Car–C); 1394 s,
1353 m, 1278 w for ns(O–C–O); 1236 w, 1110 m, 1026 m for
15 P. Orioli, B. Bruni, M. D. Vaira, L. Messori and F. Piccioli, Inorg.
Chem., 2002, 41, 4312.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 1644–1658 | 1657
©