ORGANIC
LETTERS
2011
Vol. 13, No. 10
2762–2765
InCl3/Me3SiBr-Catalyzed Direct Coupling
between Silyl Ethers and Enol Acetates
Yoshiharu Onishi, Yoshihiro Nishimoto, Makoto Yasuda, and Akio Baba*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Received April 4, 2011
ABSTRACT
A combined Lewis acid catalyst of InCl3 and Me3SiBr promoted the direct use of enol acetates in the coupling with low-reactive silyl ethers, in
which functional groups including ketones and aldehydes survived. Sterically hindered silyl ethers such as ROSiEt3, ROSiPh3, ROSit-BuMe2, and
ROSii-Pr3 were also applicable.
The coupling reactions between metal enolates and
alkylating electrophiles such as alkyl halides, alcohols, alkyl
ethers, and alkyl carboxylates have been extensively inves-
tigated to produce R-alkylated carbonyl compounds.1À3
Thereaction system using silylethersasalkylatingreagents,
however, has not been sufficiently established,4 because
silyl ethers are used for the typical protection of alcohols
and they have such a high tolerance to nucleophilic sub-
stitution. In fact, they do not react with even strong
nucleophiles like Grignard reagents. Gevorgyan et al. also
reported that no allylation using silyl ethers took place
while other protected alcohols easily gave allylated
products.5 On the other hand, if the replacement of the
metal enolates by metal-free enol acetates were achieved, it
would be a great advantage in reducing metal waste. More-
over, enol acetates are easily available and handled, stable,
and storable.6 Thus, the coupling reaction between enol
acetates and silyl ethers is a challenging and practical
subject. Herein we report the direct coupling catalyzed by
an InCl3/Me3SiBr combined system.7 To the best of our
knowledge, this is the first successful direct substitution of
bulkier siloxy groups rather than a trimethylsiloxy one.
Furthermore, the direct coupling of silyl ethers enables
skipping the deprotection process, which often requires a
multistep synthesis.
(1) For a review, see: Caine, D. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Elsevier: Oxford, U.K., 1991; Vol. 9, pp
1À63.
(2) For reviews, see: (a) Reetz, M. T.; Maier, W. F.; Chatziiosifidis, I.;
We first screened various Lewis acids in the reaction of
silyl ether 1a with enol acetate 2a (Table 1). Neither InCl3 nor
Me3SiBr gave an adduct in their sole use (entries 1 and 2).
Gratifyingly, when Me3SiI or Me3SiBr was combined with
€
Giannis, A.; Heimbach, H.; Lowe, U. Chem. Ber. 1980, 113, 3734–3757.
(b) Reetz, M. T. Angew. Chem., Int. Ed. 1982, 21, 96–108.
(3) For recent works on R-alkylation of carbonyl compounds using
alcohols or protected alcohols, see: (a) Nishibayashi, Y.; Wakiji, I; Ishii,
Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393–3394. (b)
Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. J. Org.
Chem. 2003, 68, 9340–9347. (c) Shirakawa, S.; Kobayashi, S. Org. Lett.
2007, 9, 311–314. (d) Vicennati, P.; Cozzi, P. G. Eur. J. Org. Chem. 2007,
2248–2253. (e) Rubenbauer, P.; Bach, T. Tetrahedron Lett. 2008, 49,
1305–1309. (f) Yoshimatsu, M.; Otani, T.; Matsuda, S.; Yamamoto, T.;
Sawa, A. Org. Lett. 2008, 10, 4251–4254. (g) Cozzi, P. G.; Benfatti, F.;
Zoli, L. Angew. Chem., Int. Ed. 2009, 48, 1313–1316. (h) Nishimoto, Y.;
Onishi, Y.; Yasuda, M.; Baba, A. Angew. Chem., Int. Ed. 2009, 48, 9131–
9134.
(4) For reports using silyl ethers as alkylating reagents, see: (a) Kira,
M.; Hino, T.; Sakurai, H. Chem. Lett. 1992, 21, 555–558. (b) Yokozawa,
T.; Furuhashi, K.; Natsume, H. Tetrahedron Lett. 1995, 36, 5243–5246.
(c) Braun, M.; Kotter, W. Angew. Chem., Int. Ed. 2004, 43, 514–517. (d)
Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2007, 72,
8588–8590.
(5) (a) Schwier, T; Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 6,
1999–2001. (b) Rubin, M; Gevorgyan, V. Org. Lett. 2001, 3, 2705–2707.
(6) (a) Mukaiyama, T.; Izawa, T.; Saigo, K. Chem. Lett. 1974, 323–
326. (b) Shono, T.; Nishiguchi, I.; Komamura, T.; Sasaki, M. J. Am.
Chem. Soc. 1979, 101, 984–987. (c) Yanagisawa, M.; Shimamura, T.;
Iida, D.; Matsuo, J.; Mukaiyama, T. Chem. Pharm. Bull. 2000, 48, 1838–
1840. (d) See ref 3h. (e) Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-
P.; Li, H.; Gan, L.-B.; Shi, Z.-J. Chem. Commun. 2009, 6002–6004. (f)
Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2010, 49, 3069–3072.
(7) (a) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem.
2002, 1578–1581. (b) Saito, T.; Yasuda, M.; Baba, A. Synlett 2005, 1737–
1739. (c) Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71,
8516–8522. (d) See ref 4d.
r
10.1021/ol200875m
Published on Web 04/28/2011
2011 American Chemical Society