2986
J . Org. Chem. 1999, 64, 2986-2987
Sch em e 1
Th e Dir ected Or th o Meta la tion -Ullm a n n
Con n ection . A New Cu (I)-Ca ta lyzed Va r ia n t
for th e Syn th esis of Su bstitu ted Dia r yl
Eth er s
Alexey V. Kalinin, J ustin F. Bower,† Peter Riebel,† and
Victor Snieckus*,†
Guelph-Waterloo Centre for Graduate Work in Chemistry,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Received J anuary 21, 1999
The recent reports by Buchwald, Hartwig, and others have
posited valuable new Pd-catalyzed C-N, C-O, and C-S
bond coupling methodology for aromatic substrates,1,2 which
is beginning to supplant the classical Ullmann reaction.3 The
utility of diaryl ethers as synthetic intermediates and their
structural presence in a variety of bioactive and natural
products4 provides a strong incentive for further method
development. In the course of work demonstrating a com-
bined Directed ortho and remote metalation (DoM and
DreM) method for the construction of thioxanthones,5a
xanthones,5b acridones,6 and dibenzo[b,e]phosphinones,7 from
the corresponding diaryl sulfones, ethers, amines, and
phosphine oxides, respectively, 2 f 1a ,b (Scheme 1), we
have uncovered a new variation of the Buchwald procedure1a
for systems 2 that augments the synthetic scope and
convenience for the construction of substituted diaryl ethers.
Herein, we disclose this methodology, which embodies the
following features: (a) it employs CuPF6(MeCN)4 (5 mol %)8
rather than the air-labile CuOTf(C6H6)0.5 complex in reflux-
Sch em e 2a
a
Conditions: 1.2-1.5 equiv of 4/0.05 equiv of CuPF6(MeCN)4/2 equiv
of Cs2CO3/toluene or xylenes/reflux/5-45 h.
* To whom correspondence should be addressed. E-mail: snieckus@
chem.queensu.ca.
ing toluene or xylenes in the presence of obligatory Cs2CO3
(2 equiv) as base;1a (b) it is successful for o-halo tertiary and
secondary benzamides and sulfonamides 3 (Scheme 2),
which are reported to be poorly behaved substrates;1a the
results obtained allow the DoM connection9,10 and hence
regiospecific access to 1,2,3-contiguous aromatic substitution
patterns; (c) iodo, bromo, and, in contrast to previous
Ullmann generalizations,1a,3 secondary chloro benzamides
serve as coupling partners; (d) thiophenol and benzylamine
undergo smooth coupling reactions; and (e) using double
Ullmann and Ullmann-Negishi protocols, it may be ex-
tended to the assemblage of Ar-O-Ar′-O-Ar′′ and Ar-Ar′-
O-Ar′′ motifs, 7 and 8, which are structural components of
biologically active and natural products.4
Selected results (Table 1) are illustrative of the scope of
the methodology. Treatment of N-ethyl 2-iodobenzamide
with m-cresol in the presence of CuPF6(MeCN)4 complex (5
mol %)8 and Cs2CO3 (2 equiv)1a in refluxing toluene for 24 h
indicated complete consumption of starting material (GC)
and formation of a 97:3 mixture of diaryl ether (5a ) and
deiodinated starting benzamide; normal workup and distil-
lation afforded pure product in 88% yield (entry 1). Cs2CO3
appears to be the base of choice, which is attributed to a
higher solubility of the formed ArOCs species.1a The effect
of catalyst solubility on the outcome of the reaction was
examined by experiments with the common, notably soluble,
Cu(I) sources, CuI and Cu2O. Both catalysts are as effective
as CuPF6 (Table 1, footnote c) but, similar to CuOTf, require
longer times compared to CuPF6 for completion of reaction
(GC monitoring). 2-Bromo benzamide (entry 2) was equally
effective to the iodo derivative; even N-ethyl 2-chloroben-
zamide (entry 3) led to satisfactory yields of diaryl ether
product but required higher reaction temperatures (xylenes,
† Current addresses: (J .F.B.) RiboTargets Ltd., c/o University Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge, CB2
1EW, U.K.; (P.R.) R&D Centre Linz, DSM Fine Chemicals Austria GmbH,
St.-Peter-Strasse 25, P.O. Box 933, A-4021, Linz, Austria; (V.S.) Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada.
(1) C-O bond formation: (a) Marcoux, J .-F.; Doye, S.; Buchwald, S. L.
J . Am. Chem. Soc. 1997, 119, 10539-10540 and references therein. C-N
bond formation: (b) Old, D. W.; Wolfe, J . P.; Buchwald, S. L. J . Am. Chem.
Soc. 1998, 120, 9722-9723 and references therein. (c) Mann, G.; Hartwig,
J . F.; Driver, M. S.; Fernandez-Rivas, C. J . Am. Chem. Soc. 1998, 120, 827-
828. (d) For a recent review on transition metal catalyzed synthesis of
arylamines/ethers, see: Hartwig, J . F. Angew. Chem., Int. Ed. Engl. 1998,
37, 2046-2067. Hartwig, J . F. Synlett 1997, 329-340. (e) Ma, D.; Zhang,
Y.; Yao, J .; Wu, S.; Tao, F. J . Am. Chem. Soc. 1998, 120, 12459-12467.
C-S bond formation: (f) Pinchart, A.; Dallaire, C.; Gingras, M. Tetrahedron
Lett. 1998, 39, 543-546. (g) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara,
J .-i.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. J pn. 1980, 53, 1385-1389.
(2) For a promising new methodology of diaryl ether/amine synthesis
using copper-mediated coupling of aryl boronic acids with phenols and
amines, see: (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M.
P. Tetrahedron Lett. 1998, 39, 2933-2936. (b) Evans, D. A.; Katz, J . L.;
West, T. R. Tetrahedron Lett. 1998, 39, 2937-2940. (c) Lam, P. Y. S.; Clark,
C. G.; Saubern, S.; Adams, J .; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tetrahedron Lett. 1998, 39, 2941-2944. (d) Cundy, D. J .; Forsyth, S. A.
Tetrahedron Lett. 1998, 39, 7979-7982.
(3) Review: Lindley, J . Tetrahedron 1984, 40, 1433-1456. For an
Ullmann reaction under ultrasound, see: Hanoun, J .-P.; Galy, J .-P.;
Tenaglia, A. Synth. Commun. 1995, 25, 2443-2448. For a non-Ullmann
diaryl ether synthesis, see: J ung, M. E.; Starkey, L. S. Tetrahedron 1997,
53, 8815-8824.
(4) See, inter alia: Evans, D. A.; Dinsmore, C. J .; Watson, P. S.; Wood,
M. R.; Richardson, T. I.; Trotter, B. W.; Katz, J . L. Angew. Chem., Int. Ed.
Engl. 1998, 37, 2704-2708. Nicolaou, K. C.; Takayanagi, M.; J ain, N. F.;
Natarajan, S.; Koumbis, A. E.; Bando, T.; Ramanjulu, J . M. Angew. Chem.,
Int. Ed. Engl. 1998, 37, 2717-2719. Sawyer, J . S.; Schmittling, E. A.;
Palkowitz, J . A.; Smith, W. J ., III. J . Org. Chem. 1998, 63, 6338-6343 and
references therein. Boger, D. L.; Miyazaki, O. L.; Beresis, R. T.; Castle, S.
L.; Wu, J . H.; J in, Q. J . Am. Chem. Soc. 1998, 120, 8920-8926.
(5) (a) Beaulieu, F.; Snieckus, V. J . Org. Chem. 1994, 59, 9, 6508-6509.
(b) Familoni, O. B.; Ionica, I.; Bower, J . F.; Snieckus, V. Synlett 1997, 1081-
1083.
(6) MacNeil, S. L.; Gray, M.; Briggs, L. E.; Li, J . J .; Snieckus, V. Synlett
1998, 419-421.
(7) Gray, M.; Chapell, B. J .; Taylor, N. J .; Snieckus, V. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1558-1560.
(9) Snieckus, V. Chem. Rev. 1990, 90, 879-933.
(10) Maillet, M.; Snieckus, V. Unpublished results.
(8) Kubas, G. J . Inorg. Synth. 1979, 19, 90-92.
10.1021/jo990114x CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/15/1999