EnantioselectiVe Total Synthesis of Fredericamycin A
J. Am. Chem. Soc., Vol. 123, No. 14, 2001 3215
Scheme 1. Reported Total Synthesis of Fredericamycin A
(1)
difficult.13 For the purpose of the synthesis of the optically active
CDEF-ring unit, we first studied the construction of the chiral
spiro center whose stereochemistry could be easily determined.
As a new approach to the chiral spiro compounds,14,15 we
planned to use the stereoselective rearrangement of the optically
active cyclic 2,3-epoxy acylates for the following five reasons:
16,17
(i) acyloxy epoxides are easily constructed in optically
active forms from the optically active allyl alcohols, (ii) many
methodologies are available for the synthesis of optically active
allyl alcohols, (iii) it is easy to determine the absolute config-
uration of the allyl alcohol systems, (iv) the absolute configura-
tions of the spiro centers produced are readily determined if
the rearrangement proceeds in a stereoselective manner, and (v)
the acyloxy group would suppress the rearrangement of sub-
stituent on the carbon attached to the acyloxy group because of
its electron-withdrawing nature, although most epoxy alcohol
derivatives such as siloxy, alkoxy, and hydroxy groups tend to
(12) We are also investigating a different approach to the total synthesis
of 1 based on the intramolecular [4+2]-cycloaddition approach; see: (a)
Kita, Y.; Okunaka, R.; Honda, T.; Shindo, M.; Tamura, O. Tetrahedron
Lett. 1989, 30, 3995-3998. (b) Kita, Y.; Okunaka, R.; Honda, T.; Kondo,
M.; Tamura, O.; Tamura, Y. Chem. Pharm. Bull. 1991, 39, 2106-2114.
(c) Akai, S.; Iio, K.; Takeda, Y.; Ueno, H.; Kita, Y. Synlett 1997, 310-
312. (d) Kita, Y.; Akai, S.; Fujioka, H. Yuki Gosei Kagaku Kyokaishi 1998,
56, 963-974 [Chem. Abstr. 1998, 129, 343342]. (e) Kita, Y.; Iio, K.;
Kawaguchi, K.; Fukuda, N.; Takeda, Y.; Ueno,. H.; Okunaka, R.; Higuchi,
K.; Tujino, T.; Fujioka, H.; Akai, S. Chem. Eur. J. 2000, 6, 3897-3905. A
related intramolecular approach was reported separately; see: Toyota, M.;
Terashima, S. Tetrahedron Lett. 1989, 30, 829-832.
Scheme 2. Our Synthetic Plan for Optically Active
Fredericamycin A (1)
(13) For reviews of the asymmetric synthesis of the quaternary carbon
center containing a spiro carbon center, see: (a) Fuji, K. Chem. ReV. 1993,
93, 2037-2066. (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int.
Ed. 1998 37, 388-401.
(14) For recent examples of spirocyclane systems, see: (a) Bach, R. D.;
Tubergen, M. W.; Klix, R. C. Tetrahedron Lett. 1986, 27, 3565-3568. (b)
Rao, A. V. R.; Singh, A. K.; Reddy, K. M.; Ravikumar, K. J. Chem. Soc.,
Perkin Trans. 1 1993, 3171-3175. (c) Kuroda, C.; Hirono, Y. Tetrahedron
Lett. 1994, 35, 6895-6896. (d) Provencal, D. P.; Leahy, J. W. J. Org. Chem.
1994, 59, 5496-5498. (e) Mandai, T.; Tsujiguchi, Y.; Tsuji, J.; Saito, S.
Tetrahedron Lett. 1994, 35, 5701-5704. (f) Fuchs, K.; Paquette, L. A. J.
Org. Chem. 1994, 59, 528-532. (g) Sands, R. D. J. Org. Chem. 1994, 59,
468-471. (h) Kessar, S. V.; Vohra, R.; Kaur, N. P.; Singh, K. N.; Singh,
P. J. Chem. Soc., Chem. Commun. 1994, 1327-1328. (i) Hatsui, T.; Wang,
J.-J.; Ikeda, S.; Takeshita, H. Synlett 1995, 35-37. (j) Patra, D.; Ghosh, S.
J. Chem. Soc., Perkin Trans. 1 1995, 2635-2641. (k) Kno¨lker, H.-J.; Jones,
P. G.; Graf, R. Synlett 1996, 1155-1158. (l) Sattelkau, T.; Hollmann, C.;
Eilbracht, P. Synlett 1996, 1221-1223. (m) Trost, B. M.; Chen, D. W. C.
J. Am. Chem. Soc. 1996, 118, 12541-12554. (n) Tokunaga, Y.; Yagihashi,
M.; Ihara, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1997, 189-
190. (o) Baskaran, S.; Nagy, E.; Braun, M. Liebigs Ann./ Recl. 1997 311-
312. (p) Crane, S. N.; Burnell, D. J. J. Org. Chem. 1998, 63, 5708-5710.
For reviews, see: Krapcho, A. P. Synthesis 1978, 77-126.
(15) For recent examples of asymmetric synthesis of the chiral spiro-
cyclane systems, see: (a) Kno¨lker, H.-J.; Graf, R. Tetrahedron Lett. 1993,
34, 4765-4768. (b) Chitkul, B.; Pinyopronpanich, Y.; Thebtaranonth, C.;
Thebtaranonth, Y.; Taylor, W. C. Tetrahedron Lett. 1994, 35, 1099-1102.
(c) Galvez, J. M. G.; Angers, P.; Canonne, P. Tetrahedron Lett. 1994, 35,
2849-2852. (d) Maezaki, N.; Fukuyama, H.; Yagi, S.; Tanaka, T.; Iwata,
C. J. Chem. Soc., Chem. Commun. 1994, 1835-1836. (e) Huang, H.;
Forsyth, C. J. J. Org. Chem. 1995, 60, 2773-2779. (f) Villar, J. M.; Delgado,
A.; Llebaria, A.; Moreto´, J. M. Tetrahedron: Asymmetry 1995, 6, 665-
668. (g) Zhu, Y.-Y.; Burnell, D. J. Tetrahedron: Asymmetry 1996, 7, 3295-
3304. (h) Takemoto, Y.; Kuraoka, S.; Ohra, T.; Yonetoku, Y.; Iwata, C.
Tetrahedron, 1997, 53, 603-616 and references therein. For review, see:
(i) Murai, A. Yuki Gosei Kagaku Kyokaishi 1981, 39, 893-908 [Chem.
Abstr. 1981, 96, 52511]. (j) Sannigrahi, M. Terahedron 1999, 55, 9007-
9071.
ring unit would afford the optically active fredericamycin A.
The success of this synthesis would supply a way to synthesize
various analogues because various types of homophthalic
anhydrides are available as the AB-ring unit. According to our
synthetic plan, we recently communicated the first asymmetric
total synthesis of 111,12 and succeeded in determining its absolute
configuration. In this paper, we describe the full details of our
study on the synthesis of optically active 1.
Synthesis of Optically Active CDEF-Ring Unit: Construc-
tion of Optically Active Spiro Centers. The determination of
the absolute stereochemistry of the spiro center is usually
(9) (a) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1991, 56, 2115-
2112. (b) Kelly, T. R.; Li, Q.; Lohray, V. B. U.S. Patent 5166208 [Chem.
Abstr. 1993, 118, 191434]. (c) Clive, D. L. J.; Kong, X.; Paul, C. C.
Tetrahedron 1996, 52, 6085-6116. See also: (d) Hasegawa, H.; Yokoi,
K.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizeki, S.; Nakajima, T. Japanese
Patent 60152468 [Chem. Abstr. 1986, 104, 33948]. (e) Hasegawa, H.; Yokoi,
K.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizeki, S.; Nakajima, T. Japanese
Patent 61044868 [Chem. Abstr. 1986, 105, 97256]. (f) Hasegawa, H.; Yokoi,
K.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizeki, S.; Nakajima, T. Japanese
Patent 61044867 [Chem. Abstr. 1987, 106, 49879].
(10) Application of this method to the total syntheses of peri-hydroxy
polyaromatic compounds: (a) Tamura, Y.; Sasho, M.; Nakagawa, K.;
Tsugoshi, T.; Kita, Y. J. Org. Chem. 1984, 49, 473-478. (b) Tamura, Y.;
Kita, Y. Yuki Gosei Kagaku Kyokaishi 1988, 46, 205-217 [Chem. Abstr.
1988, 109, 129465d]. (c) Kita, Y.; Takeda, Y. Kagaku to Kogyo (Osaka)
1997, 71, 298-309 [Chem. Abstr. 1997, 127, 190540n]. (d) Kirihara, M.;
Kita, Y. Heterocycles 1997, 46, 705-726. See also other examples done
by other groups: (e) Matsuda, F.; Kawasaki, M.; Ohsaki, M.; Yamada, K.;
Terashima, S. Tetrahedron 1988, 44, 5745-5759. (f) Lavalle´e, J.-F.; Rej,
R.; Courchesne, M.; Nguyen, D.; Attardo, G. Tetrahedron Lett. 1993, 34,
3519-3522. (g) Matsumoto, T.; Yamaguchi, H.; Suzuki, K. Synlett 1996,
433-434. (h) Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.;
Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118, 9509-9525.
(16) For reviews on the Lewis acid-mediated rearrangement of epoxides,
see: (a) Parker, R. E.; Isaacs, N. S. Chem. ReV. 1959, 59, 737-799. (b)
Rickborn, B. In ComprehensiVe Organic Synthesis, Carbon-Carbon σ-Bond
Formation; Pattenden, G., Ed.; Pergamon Press: Oxford, 1991; Vol. 3,
Chapter 3.3, pp 733-775.
(17) For examples of rearrangement of the epoxy acetates, see: (a)
Coxon, J. M.; Hartshorn, M. P.; Kirk, D. N. Tetrahedron 1964, 20, 2531-
2545. (b) Coxon, J. M.; Hartshorn, M. P.; Kirk, D. N. Tetrahedron 1964,
20, 2547-2552. In these cases, however, the yields of the rearranged
products were very low and the regioselective cleavage of the oxirane ring
was not observed.
(11) Preliminary communication: Kita, Y.; Higuchi, K.; Yoshida, Y.;
Iio, K.; Kitagaki, S.; Akai, S.; Fujioka, H. Angew. Chem., Int. Ed. 1999,
38, 683-686.