Magnetic Glyco-Nanoparticles To Detect Tumor Cells
A R T I C L E S
extensively probed by antibodies and plant-derived lectins.12,16
This led to the identification of characteristic tumor-associated
carbohydrate molecules,11,12 which has greatly facilitated the
development of carbohydrate-based anticancer vaccine studies.9,17
In comparison, the understanding of carbohydrate-binding
properties of tumors is not as advanced. Cancer cells can interact
with the extracellular matrix in their microenvironment through
endogenous receptors binding with carbohydrates.18-20 These
interactions vary, depending on the physiological state of the
cells, as supported by the ground-breaking histological studies
of tumor tissues.21-23 Therefore, the ability to characterize and
distinguish carbohydrate binding profiles of a variety of cells
can expedite both the mechanistic understanding of their roles
in disease development and the expansion of diagnostic and
therapeutic tools.24-26 As the distinctions among cancer cell
subtypes and malignant vs normal cells can often be subtle, a
suitable tool is needed to quantitatiVely analyze the fine
characteristics in carbohydrate binding of various cell types.
MGNPs can allow cell detection via magnetic resonance
imaging (MRI) without the need to prelabel the cells.31–33
One challenge, however, in using MGNPs and carbohydrates
for molecular recognition is that multiple cell types may bind
with the same carbohydrate structure albeit in different affinities.
To address this issue, we envision that by pooling the responses
from an array of MGNPs, the various cell types may be
differentiated through pattern recognition.2,34-36 Furthermore,
the information obtained on the physiologically relevant
carbohydrate-receptor interaction can not only enhance our
understanding of the roles carbohydrate play in cancer but also
guide the development of potential therapeutics such as agents
against cancer adhesion. Although glyco-nanoparticles have been
previously employed for elegant studies of carbohydrate-
mediated biological recognitions,37-48 MGNPs have not been
utilized to detect and systematically profile mammalian cells.
Experimental Section
Cells and Culture Conditions. Unless otherwise indicated, all
starting materials, reagents and solvents were obtained from
commercial suppliers (Sigma-Aldrich or Fisher Scientific) and used
as supplied without further purification. All fluorescein-labeled
lectins were purchased from Aldrich. All cell lines were purchased
from the American Type Culture Collection (ATCC) [cell line
designation (catalogue no.), type] unless otherwise noted: 184B5
(CRL-8799), normal breast cell; A498 (HTB-44), kidney cancer;
A549 (CCL-185), lung cancer; HT29 (HTB-38), colon cancer;
SKOV-3 (HTB-77), ovarian cancer; B16-F10 (CRL-6475), meta-
static mouse melanoma; B16-F1 (CRL-6323), less metastatic mouse
melanoma. The MCF-7/Adr-res (adriamycin-resistant breast cancer)
cell line was obtained from the National Cancer Institute. Two
murine mammary carcinoma cell lines (TA3-HA, TA3-ST) were
kind gifts from Dr. John Hilkens, Netherlands Cancer Institute. All
In the past decade, nanotechnology has begun to play
increasingly important roles in cancer research.6 Using antibody-
immobilized nanoparticles, various types of cancer cells were
detected both in Vitro1 and in ViVo.27 Recently, instead of relying
on the specific antibodies, structurally related cationic gold
nanoparticles bearing fluorescent polymers on the surface were
prepared.2 The differential electrostatic and hydrophobic interac-
tions between the gold nanoparticles and cells were reflected
in changes of fluorescence intensity upon cell binding, which
allowed the differentiation of tumor from normal cells as well
as closely related tumor cells. Herein, we explore the possibility
of using a magnetic glyco-nanoparticle (MGNP)-based system
to detect and profile various cell types on the basis of the more
physiologically related carbohydrate-receptor interactions.
MGNPs provide an appealing platform for biological detection.
The spherical nanoparticles have large surface areas, which
allow the attachment of multiple carbohydrates leading to
enhanced avidity with carbohydrate receptors through multiva-
lent binding.13,28 Unlike the toxic heavy metal-containing
nanoparticles such as quantum dots,29,30 the magnetite nano-
particles have been approved for clinical uses with minimum
cytotoxicity.31 Furthermore, the superparamagnetic nature of this
(29) Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R. Small
2006, 2, 1412–1417.
(30) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4,
11–18.
(31) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995–4021.
(32) Wang, Y.-X. J.; Hussain, S. M.; Krestin, G. P. Eur. Radiol. 2001, 11,
2319–2331.
(33) Weissleder, R.; Elizondo, G.; Wittenberg, J.; Rabito, C. A.; Bengele,
H. H.; Josephson, L. Radiology 1990, 175, 489–493.
(34) Collins, B. E.; Wright, A. T.; Anslyn, E. V. Top. Curr. Chem. 2007,
277, 181–218.
(35) Wright, A. T.; Anslyn, E. V. Chem. Soc. ReV. 2006, 35, 14–28.
(36) Jurs, P. C.; Bakken, G. A.; McClelland, H. E. Chem. ReV. 2000, 100,
2649–2678.
(16) Dai, Z.; Zhou, J.; Qiu, S.-J.; Liu, Y.-K.; Fan, J. Electrophoresis 2009,
30, 2957–2966, and references therein.
(17) Buskas, T.; Thompson, P.; Boons, G.-J. Chem. Commun. 2009, 5335–
5349.
(37) Barrientos, A. G.; de la Fuente, J. M.; Jime´nez, M.; Sol´ıs, D.; Can˜ada,
F. J.; Mart´ın-Lomas, M.; Penade´s, S. Carbohydr. Res. 2009, 344,
1474–1478.
(18) Barthel, S. R.; Gavino, J. D.; Descheny, L.; Dimitroff, C. J. Exp. Opin.
Ther. Targets 2007, 11, 1473–1491.
(38) Liang, C.-H.; Wang, C.-C.; Lin, Y.-C.; Chen, C.-H.; Wong, C.-H.;
Wu, C.-Y. Anal. Chem. 2009, 81, 7750–7756.
(19) Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N. Cancer
Sci. 2004, 65, 377–384.
(39) Marradi, M.; Alca´ntara, D.; de la Fuente, J. M.; Garc´ıa-Mart´ın, M. L.;
Cerda´n, S.; Penade´s, S. Chem. Commun. 2009, 3922–3924.
(40) van Kasteren, S. I.; Campbell, S. J.; Serres, S.; Anthony, D. C.; Sibson,
N. R.; Davis, B. G. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18–23.
(41) Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P. H.
J. Am. Chem. Soc. 2009, 131, 2110–2112.
(20) Lahm, H.; Andre, S.; Hoeflich, A.; Kaltner, H.; Siebert, H.-C.; Sordat,
B.; von der Lieth, C.-W.; Wolf, E.; Gabius, H.-J. Glycoconjugate J.
2004, 20, 227–238.
(21) Gabius, H.-J. Anat. Histol. Embryol. 2001, 30, 3–31, and references
therein.
(22) Kayser, K.; Bovin, N. V.; Zemlyanukhina, T. V.; Donaldo-Jacinto,
S.; Koopmann, J.; Gabius, H.-J. Glycoconjugate J. 1994, 11, 339–
344.
(42) Thygesen, M. B.; Sauer, J.; Jensen, K. J. Chem.sEur. J. 2009, 15,
1649–1660.
(43) Mukhopadhyay, B.; Martins, M. B.; Karamanska, R.; Russell, D. A.;
Field, R. A. Tetrahedron Lett. 2009, 50, 886–889.
(44) Sundgren, A.; Barchi, J. J. Carbohydr. Res. 2008, 343, 1594–1604.
(45) El-Boubbou, K.; Gruden, C.; Huang, X. J. Am. Chem. Soc. 2007, 129,
13392–13393.
(23) Kayser, K.; Heil, M.; Gabius, H.-J. Pathol., Res. Pract. 1989, 184,
621–629.
(24) Kim, E. Y. L.; Gronewold, C.; Chatterjee, A.; Von der Lieth, C.-W.;
Kliem, C.; Schmauser, B.; Wiessler, M.; Frei, E. ChemBioChem 2005,
6, 422–431 and references cited therein.
(46) de Souza, A. C.; Halkes, K. M.; Meeldijk, J. D.; Verkleij, A. J.;
Vliegenthart, J. F. G.; Kamerling, J. P. ChemBioChem 2005, 6, 828–
831.
(25) Lerchen, H.-G.; Baumgarten, J.; Piel, N.; Kolb-Bachofen, V. Angew.
Chem., Int. Ed. 1999, 38, 3680–3683.
(26) Rye, P. D.; Bovin, N. V. Glycobiology 1997, 7, 179–182.
(27) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat.
Biotechnol. 2004, 22, 969–979.
(47) Hone, D. C.; Haines, A. H.; Russell, D. A. Langmuir 2003, 19, 7141–
7144.
(48) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, G.-F.; Chen, Y.-C.; Wu,
Y.-C.; Chen, C.-C. Chem. Commun. 2003, 2920–2921.
(28) Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321–327.
9
J. AM. CHEM. SOC. VOL. 132, NO. 12, 2010 4491