Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
electron oxidation of radical C to acyl carbocation intermediate
Wu, ACS Catal. 2016, 6, 5561-5564; d)DYO.IH: 1.0L.1i,03F9. /XC.9ZChCu0,2Z11.2CD.
D
. Finally,
D
undergoes a nucleophile ring close process to
which will be
through a
Wang, X. F. Wu, Chem. Commun. 2018, 54, 1984-1987.
a) C. L. Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293-
1314; b) J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507-
514; c) A. A. Fokin, P. R. Schreiner, Adv. Synth. Catal. 2003,
345, 1035-1052; d) A. A. Fokin, P. R. Schreiner, Chem. Rev.
2002, 102, 1551-1593; e) C. M. Che, V. K. Y. Lo, C. Y. Zhou, J.
S. Huang, Chem. Soc. Rev. 2011, 40, 1950-1975.
provide the six-membered product
transformed into the final six-membered lactams
facile base-mediated double bond isomerization.
E
,
6
7
F
a) L. M. Stateman, K. M. Nakafuku, D. A. Nagib, Synthesis
2018, 50, 1569-1586; b) S. Chiba, H. Chen, Org. Biomol.
Chem. 2014, 12, 4051-4060; c) J. Robertson, J. Pillai, R. K.
Lush, Chem. Soc. Rev. 2001, 30, 94-103; d) A. J. McCarroll, J.
C. Walton, Angew. Chem. Int. Ed. 2001, 40, 2225-2248; e) J.
Hartung, T. Gottwald, K. Špehar, Synthesis 2002, 1469-1498;
f) X. Q. Hu, J. R. Chen, W. J. Xiao, Angew. Chem. Int. Ed. 2017,
56, 1960-1962.
Scheme 2. Control experiments.
8
9
Hofmann, A. W. Chem. Ber. 1883, 16, 558560.
a) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles,
Nature 2016, 539, 268-271; b) J. C. Chu, T. Rovis, Nature
2016, 539, 272-275; c) J. Zhang, Y. Li, F. Zhang, C. Hu, Y.
Chen, Angew. Chem. Int. Ed. 2016, 55, 1872-1875; d) C.
Wang, K. Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55
,
13495-13498; e) G. Petrović, Ž. Čeković, Tetrahedron Lett.
1997, 38, 627-630; f) Z. Y. Ma, L. N. Guo, Y. R. Gu, L. Chen, X.
H. Duan, Adv. Synth. Catal. 2018, 360, 4341-4347.
10 a) B. Zhao, Z. Shi, Angew. Chem. Int. Ed. 2017, 56, 12727-
12731; b) W. Ai, Y. Liu, Q. Wang, Z. Lu, Q. Liu, Org. Lett. 2018,
20, 409-412; c) J. Wu, J.-Y. Zhang, P. Gao, S.-L. Xu, L.-N. Guo,
J. Org. Chem. 2017, 83, 1046-1055; d) W. W. Tan, Y. J. Ong,
N. Yoshikai, Angew. Chem. Int. Ed. 2017, 56, 8240-8244; e) A.
Faulkner, N. J. Race, J. S. Scott, J. F. Bower, Chem. Sci. 2014,
Scheme 3. Proposed mechanism.
5
, 2416-2421; f) Y. Wei, N. Yoshikai, J. Am. Chem. Soc. 2013,
135, 3756-3759; g) Z.-H. Ren, Z.-Y. Zhang, B.-Q. Yang, Y.-Y.
Wang, Z.-H. Guan, Org. Lett. 2011, 13, 5394-5397; h) P.-Z.
Wang, X.-Y. Yu, C.-Y. Li, B.-Q. He, J.-R. Chen, W.-J. Xiao, Chem.
Commun. 2018, 54, 9925-9928; i) X. Y. Yu, J. R. Chen, P. Z.
Wang, M. N. Yang, D. Liang, W. J. Xiao, Angew. Chem. Int. Ed.
2018, 57, 738-743; j) B. Zhao, C. Chen, J. Lv, Z. Li, Y. Yuan, Z.
In summary, an interesting protocol for the carbonylation
of tertiary carbon radical has been developed. Various oxime
esters were synthesized from easily accessible ketones, which
can be reduced by cheap iron catalyst to provide the
corresponding iminyl radical. The unstable tertiary carbon
radical was generated through a 1,5-hydrogen atom transfer.
We succeed to capture this tertiary carbon radical with CO to
construct different six-membered lactams in high yields and
excellent chemo-selectivity, which is very difficult to access via
other methods.
Shi, Org. Chem. Front. 2018, 5, 2719-2722; k) B. Zhao, H. Tan,
C. Chen, N. Jiao, Z. Shi, Chin. J. Chem. 2018, 36, 995-999; l) X.
Shen, J.-J. Zhao, S. Yu, Org. Lett. 2018, 20, 5523-5527; m) T.
Nishimura, T. Yoshinaka, Y. Nishiguchi, Y. Maeda, S. Uemura,
Org. Lett. 2005, 7, 2425-2427; n) J. F. Zhao, P. Gao, X. H.
Duan, L. N. Guo, Adv. Synth. Catal. 2018, 360, 1775-1779; o)
J.-F. Zhao, X.-H. Duan, Y.-R. Gu, P. Gao, L.-N. Guo, Org. Lett.
2018, 20, 4614-4617.
11 CCDC 1886524 contains the supplementary crystallographic
data for this paper. These data are provided free of charge
by The Cambridge Crystallographic Data Centre.
12 W. Shu, C. Nevado, Angew. Chem. Int. Ed. 2017, 56, 1881-
1884.
Conflicts of interest
There are no conflicts to declare.
13 a) I. Ryu, K. Kusano, H. Yamazaki, N. Sonoda, J. Org. Chem.
1991, 56, 5003-5005; b) I. Ryu, H. Yamazaki, K. Kusano, A.
Ogawa, N. Sonoda, J. Am. Chem. Soc. 1991, 113, 8558-8560.
14 W. Miao, Y. Zhao, C. Ni, B. Gao, W. Zhang, J. Hu, J. Am. Chem.
Soc. 2018, 140, 880-883.
Notes and references
1
M. Brubaker, D. Coffman, H. Hoehn, J. Am. Chem. Soc. 1952,
74, 1509-1515.
2
a) H. Matsubara, T. Kawamoto, T. Fukuyama, I. Ryu, Acc.
Chem. Res. 2018, 51, 2023-2035; b) I. Ryu, N. Sonoda,
Angew. Chem. Int. Ed. Engl. 1996, 35, 1050-1066.
S. Tsunoi, I. Ryu, T. Okuda, M. Tanaka, M. Komatsu, N.
Sonoda, J. Am. Chem. Soc. 1998, 120, 8692-8701.
a) I. Ryu, K. Kusano, A. Ogawa, N. Kambe, N. Sonoda, J. Am.
Chem. Soc. 1990, 112, 1295-1297; b) I. Ryu, K. Nagahara, N.
Kambe, N. Sonoda, S. Kreimerman and M. Komatsu, Chem.
Commun. 1998 1953-1954.
Graphic abstract:
3
4
5
a) Y. H. Li, K. W. Dong, F. X. Zhu, Z. C. Wang, X. F. Wu, Angew.
Chem. Int. Ed. 2016, 55, 7227-7230; b) Y. H. Li, C. S. Wang, F.
X. Zhu, Z. C. Wang, P. H. Dixneuf, X. F. Wu, ChemSusChem
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins