2998
J . Org. Chem. 1999, 64, 2998-2999
Cyclop h ilin In h ibition by a (Z)-Alk en e
cis-P r olin e Mim ic
Scott A. Hart and Felicia A. Etzkorn*,†
Department of Chemistry, University of Virginia,
McCormick Road, Charlottesville, Virginia 22901
F igu r e 1. cis/ trans-Pro equilibrium and (Z)-alkene Ala-cis-Pro
mimic 1.
Received March 8, 1999
The peptidyl-prolyl isomerases (PPIases) cyclophilin (CyP)
and FK506 binding protein (FKBP) catalyze the cis-trans
isomerization of Xaa-Pro amide bonds. Several compounds
that bind these enzymes, including cyclosporin and FK506,
are potent immunosuppressants,1,2 although the immuno-
suppressant activity is independent of PPIase activity.3-7
Understanding the mechanism by which these enzymes
catalyze cis-trans amide isomerization will help elucidate
the native roles of these ubiquitous enzymes in cellular
processes.8 We present here a (Z)-alkene-based substrate
mimic that inhibits the PPIase activity of human cyclophilin
A (hCyPA).
Proline is unique among the 20 natural amino acids due
to its dialkylated amine, which causes amide bonds preced-
ing proline to adopt a significantly higher percentage of cis
configuration than other amino acids. Xaa-cis-Pro amides
appear in 10-30% of short prolyl peptides9 (Figure 1) and
approximately 6% of Xaa-Pro amides in proteins of known
structure.10 This relatively high occurrence of cis amides
complicates protein folding when a particular prolyl amide
must isomerize before a protein can reach its native folded
structure. On the time scale of protein folding, thermal cis-
trans amide isomerization is slow, leading to slow steps in
the folding of proline-containing proteins.9,11-13 PPIases
facilitate this process in nature by catalyzing prolyl cis-
trans amide isomerization. A twisted amide mechanism was
proposed on the basis of both the observation that the keto-
carbonyl of the FK506 R-keto amide was orthogonal to the
amide plane in the bound conformation14-16 and secondary
kinetic isotope effects.17-19 More recently, it has been sug-
gested that these enzymes bind the Xaa-Pro substrate and
distort the amide bond by pyramidalizing the prolyl nitrogen
through hydrogen bonding.20-22 It was proposed that the
hydrogen bond in FKBP is donated intramolecularly from
the prolyl C-terminal amide in the substrate,20-22 while the
active site Arg-55 is proposed to act as the hydrogen donor
in hCyPA, since the orientation of the substrate in the
hCyPA active site does not allow a similar intramolecular
hydrogen bond.8 Indeed, the Arg55Ala mutant was catalyti-
cally inactive yet retained the ability to bind cyclosporin.3,8
While the immunosuppression exhibited by cyclosporin
and FK506 is independent of PPIase activity, it has been
shown these drugs do bind in the isomerase active site23,24
and are competitive inhibitors of PPIase activity.25 A better
mechanistic understanding may lead to other drugs divorced
of immunosuppression activity, as well as insights into other
PPIase dependent processes such as protein folding13 and
related chaperone activity,26 voltage gating in ion channels,27
maturation and infectivity of HIV-1,28-30 selectivity of Xaa-
Pro amides by HIV-1 protease,31 molecular switching in the
HIV-1 capsid protein,32 and regulation of mitosis by the
newly discovered PPIase Pin1.33-35
Structural studies have demonstrated that CyP is highly
selective for cis substrates. The tetrapeptide Ac-Ala-Ala-Pro-
Ala-amidomethylcoumarin was shown bound in the hCyPA
active site with a cis conformation about the central Ala-
Pro amide.36 Crystallography has also demonstrated that the
Ala-Pro dipeptide binds to hCyPA in the cis conformation.37
Additionally, the tripeptide succinyl-Ala-Pro-Ala-p-nitro-
(18) Harrison, R. K.; Caldwell, C. G.; Rosegay, A.; Melillo, D.; Stein, R.
L. J . Am. Chem. Soc. 1990, 112, 7063-7064.
(19) Stein, R. L. In Advances in Protein Chemistry; Lorimer, G., Ed.;
Academic Press: San Diego, 1993; Vol. 44, pp 1-23.
(20) Fischer, S.; Dunbrack, R. L., J r.; Karplus, M. J . Am. Chem. Soc.
1994, 116, 11931-11937.
(21) Fischer, S.; Michnick, S.; Karplus, M. Biochemistry 1993, 32, 13830-
13837.
(22) Cox, C.; Lectka, T. J . Am. Chem. Soc. 1998, 120, 10660-10668.
(23) Pflu¨gl, G.; Kallen, J .; Schirmer, T.; J ansonius, J . N.; Zurini, M. G.
M.; Walkinshaw, M. D. Nature 1993, 361, 91-94.
† Tel: (804)-924-3135. Fax: (804)-924-3567. email: etzkorn@virginia.edu.
(1) Liu, J .; Farmer, J . D., J r.; Lane, W. S.; Friedman, J .; Weissman, I.;
Schreiber, S. L. Cell 1991, 66, 807-815.
(2) Etzkorn, F. A.; Stolz, L. A.; Chang, Z.; Walsh, C. T. Curr. Opin. Str.
Biol. 1993, 3, 929-933.
(3) Zydowsky, L. D.; Etzkorn, F. A.; Chang, H. Y.; Ferguson, S. B.; Stolz,
L. A.; Ho, S. I.; Walsh, C. T. Protein Science 1992, 1, 1092-1099.
(4) Etzkorn, F. A.; Chang, Z.; Stolz, L. A.; Walsh, C. T. Biochemistry 1994,
33, 2380-2388.
(5) Aldape, R. A.; Futer, O.; De Cenzo, M. T.; J arrett, B. P.; Murcko, M.
A.; Livingston, D. J . J . Biol. Chem. 1992, 267, 16029-16032.
(6) Rosen, M. K.; Yang, D.; Martin, P. K.; Schreiber, S. L. J . Am. Chem.
Soc. 1993, 115, 821-822.
(24) Ke, H.; Mayrose, D.; Belshaw, P. J .; Alberg, D. G.; Schreiber, S. L.;
Chang, Z. Y.; Etzkorn, F. A.; Ho, S.; Walsh, C. T. Structure 1994, 2, 33-44.
(25) Kofron, J . L.; Kuzmicˇ, P.; Kishore, V.; Colo´n-Bonilla, E.; Rich, D. H.
Biochemistry 1991, 30, 6127-6134.
(7) Yang, D.; Rosen, M. K.; Schreiber, S. L. J . Am. Chem. Soc. 1993, 115,
819-820.
(26) Freskga˚rd, P.-O.; Bergenhem, N.; J onsson, B.-H.; Svensson, M.;
Carlsson, U. Science 1992, 258, 466-468.
(8) Wiederrecht, G.; Etzkorn, F. Perspectives in Drug Discovery and
Design 1994, 2, 57-84.
(27) J ayaraman, T.; Brillantes, A.-M.; Timerman, A. P.; Fleischer, S.;
Erdjument-Bromage, H.; Tempst, P.; Marks, A. R. J . Biol. Chem. 1992, 267,
9474-9477.
(9) Brandts, J . F.; Halvorson, H. R.; Brennan, M. Biochemistry 1975, 14,
4953-4963.
(10) Stewart, D. E.; Sarkar, A.; Wampler, J . E. J . Mol. Biol. 1990, 214,
253-260.
(28) Luban, J .; Bossolt, K. L.; Franke, E. K.; Kalpana, G. V.; Goff, S. P.
Cell 1993, 73, 1067-1078.
(11) Kiefhaber, T.; Grunert, H.-P.; Hahn, U.; Schmid, F. X. Biochemistry
1990, 29, 6475-6480.
(29) Thali, M.; Bukovsky, A.; Kondo, E.; Rosenwirth, B.; Walsh, C. T.;
Sodroski, J .; Go¨ttlinger, H. G. Nature 1994, 372, 363-365.
(30) Franke, E. K.; Yuan, H. E.; Luban, J . Nature 1994, 372, 359-362.
(31) Vance, J . E.; LeBlanc, D. A.; Wingfield, P.; London, R. E. J . Biol.
Chem. 1997, 272, 15603-15606.
(12) Schmid, F. X.; Mayr, L. M.; Mu¨cke, M.; Scho¨nbrunner, E. R. In
Advances in Protein Chemistry; Lorimer, G., Ed.; Academic Press: San
Diego, 1993; Vol. 44, pp 25-66.
(13) Lang, K.; Schmid, F. X.; Fischer, G. Nature 1987, 329, 268-270.
(14) Rosen, M. K.; Standaert, R. F.; Galat, A.; Nakatsuka, M.; Schreiber,
S. L. Science 1990, 248, 863-866.
(32) Gitti, R. K.; Lee, B. M.; Walker, J .; Summers, M. F.; Yoo, S.;
Sundquist, W. I. Science 1996, 273, 231-235.
(33) Lu, K. P.; Hanes, S. D.; Hunter, T. Nature 1996, 380, 544-547.
(34) Ranganathan, R.; Lu, K. P.; Hunter, T.; Noel, J . P. Cell 1997, 89,
875-886.
(35) Yaffe, M. B.; Schutkowski, M.; Shen, M.; Zhou, X. Z.; Stukenberg,
P. T.; Rahfeld, J .-U.; Xu, J .; Kuang, J .; Kirschner, M. W.; Fischer, G.;
Cantley, L. C.; Lu, K. P. Science 1997, 278, 1957-1960.
(36) Kallen, J .; Walkinshaw, M. D. FEBS Lett. 1992, 300, 286-290.
(15) Van Duyne, G. D.; Standaert, R. F.; Karplus, P. A.; Schreiber, S. L.;
Clardy, J . Science 1991, 252, 839-842.
(16) Albers, M. W.; Walsh, C. T.; Schreiber, S. L. J . Org. Chem. 1990,
55, 4984-4986.
(17) Harrison, R. K.; Stein, R. L. J . Am. Chem. Soc. 1992, 114, 3464-
3471.
10.1021/jo990409a CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/14/1999