Letters
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 19 5887
(19) Vu, T.-K. H.; Wheaton, V. I.; Hung, D. T.; Charo, I.; Coughlin,
S. R. Domains Specifying Thrombin-Receptor Activation. Nature
1991, 353, 674-677.
(20) Zhang, H.-C.; White, K. B.; McComsey, D. F.; Addo, M. F.;
Andrade-Gordon, P.; Derian, C. K.; Oksenberg, D.; Maryanoff,
B. E. High Affinity Thrombin Receptor (PAR-1) Ligands: A New
Generation of Indole-Based Peptide Mimetic Antagonists with
a Basic Amine at the C-terminus. Bioorg. Med. Chem. Lett. 2003,
13, 2199-2203.
(21) Derian, C. K.; Damiano, B. P.; Addo, M. F.; Darrow, A. L.;
D’andrea, M. R.; Nedelman, M.; Zhang, H.-C.; Maryanoff, B. E.;
Andrade-Gordon, P. Blockade of the Thrombin Receptor Pro-
tease-Activated Receptor-1 with a Small-Molecule Antagonist
Prevents Thrombus Formation and Vascular Occlusion in
Nonhuman Primates. J. Pharmacol. Exp. Ther. 2003, 304, 855-
861.
(22) Andrade-Gordon, P.; Maryanoff, B. E.; Derian, C. K.; Zhang, H.-
C.; Addo, M. F.; Darrow, A. L.; Eckardt, A. J.; Hoekstra, W. J.;
McComsey, D. F.; Oksenberg, D.; Reynolds, E. E.; Santulli, R.
J.; Scarborough, R. M.; Smith, C. E.; White, K. B. Design,
Synthesis, and Biological Characterization of a Peptide-Mimetic
Antagonist for a Tethered-Ligand Receptor. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 12257-12262.
(23) Zhang, H.-C.; Derian, C. K.; Andrade-Gordon, P.; Hoekstra, W.
J.; McComsey, D. F.; White, K. B.; Poulter, B. L.; Addo, M. F.;
Cheung, W.-M.; Damiano, B. P.; Oksenberg, D.; Reynolds, E. E.;
Pandey, A.; Scarborough, R. M.; Maryanoff, B. E. Discovery and
Optimization of a Novel Series of Thrombin Receptor (PAR-1)
Antagonists: Potent, Selective Peptide Mimetics Based on Indole
and Indazole Templates. J. Med. Chem. 2001, 44, 1021-1024.
(24) Cook, J. J.; Sitko, G. R.; Bednar, B.; Condra, C.; Mellott, M. J.;
Feng, D.-M.; Nutt, R. F.; Shafer, J. A.; Gould, R. J.; Connolly,
T. M. An Antibody against the Exo-Site of the Cloned Thrombin
Receptor Inhibits Experimental Arterial Thrombosis in the
African Green Monkey. Circulation 1995, 91, 2961-2971.
(25) Chackalamannil, S.; Ahn, H.-S.; Xia, Y.; Doller, D.; Foster, C.
Potent Non-Peptide Thrombin Receptor Antagonists. Curr. Med.
Chem.: Cardiovasc. Hematol. Agents 2003, 1, 37.
(26) Selnick, H. G.; Barrow, J. C.; Nantermet, P. G.; Connolly, T. M.
Non-Peptide Small Molecule Antagonists of the Human Platelet
Thrombin Receptor (PAR-1). Curr. Med. Chem.: Cardiovasc.
Hematol. Agents 2003, 1, 47.
(27) Chackalamannil, S.; Davies, R. J.; Asberom, T.; Doller, D.; Leone,
D. A Highly Efficient Total Synthesis of (+)-Himbacine. J. Am.
Chem. Soc. 1996, 118, 9812-9813.
(28) Doller, D.; Chackalamannil, S.; Czarniecki, M.; McQuade, R. M.;
Ruperto, V. Design, Synthesis and Structure-Activity Relation-
ship Studies of Himbacine Derived Muscarinic Receptor An-
tagonists. Bioorg. Med. Chem. Lett. 1999, 9, 901-906.
(29) Four, P.; Guibe, F. Palladium-Catalyzed Reaction of Tributyltin
Hydride with Acyl Chlorides. A Mild, Selective and General
Route to Aldehydes. J. Org. Chem. 1981, 46, 4439-4445.
(30) Ahn, H.-S.; Foster, C.; Boykow, G.; Arik, L.; Smith-Torhan, A.;
Hesk, D.; Chatterjee, M. Binding of a Thrombin Receptor
Tethered Ligand Analogue to Human Platelet Thrombin Recep-
tor. Mol. Pharmacol. 1997, 51, 350-356.
(31) Bednar, B.; Condra, C.; Gould, R. J.; Connolly, T. M. Platelet
Aggregation Monitored in a 96 Well Microplate Reader Is Useful
for Evaluation of Platelet Agonists and Antagonists. Thromb.
Res. 1995, 77, 453-463.
(32) Ahn, H.-S.; Foster, C.; Boykow, G.; Stamford, A.; Manna, M.;
Graziano, M. Inhibition of Cellular Action of Thrombin by N3-
Cyclopropyl-[4-91-methylethyl)phenylmethyl]-7H-pyrrolo[3,2-f]-
quinoazoline-1,3-diamine (SCH 79797), a Nonpeptide Thrombin
Receptor Antagonist. Biochem. Pharmacol. 2000, 60, 1425-
1434.
for helpful discussions, Drs. Birendra Pramanik and
Pradip Das for mass spectral data, and Drs. T.-M. Chan
and Mohindar Puar for NMR data.
Supporting Information Available: Experimental pro-
cedures for platelet aggregation studies, PAR-1 binding assay,
and synthesis and characterization of intermediates and final
products. This material is available free of charge via the
References
(1) Bisacchi. Anticoagulants, Antithrombotics, and Hemostatics. In
Burger’s Medicinal Chemistry and Drug Discovery, 6th ed.;
Abraham, D. J., Ed.; John Wiley and Sons: Hoboken, NJ, 2003;
Vol. 3, pp 283-338.
(2) Gould, W. R.; Leadley, R. J. Recent Advances in the Discovery
and Development of Direct Coagulation Factor Xa Inhibitors.
Curr. Pharm. Des. 2003, 9, 2337-2347.
(3) Kereiakes, D. J. Oral Blockade of the Platelet Glycoprotein IIb/
IIIa Receptor: Fact or Fancy? Am. Heart J. 1999, 138 (1, Part
2), S39-S46.
(4) Coughlin, S. R. How the Protease Thrombin Talks to Cells. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 11023-11027.
(5) Coughlin, S. R. Protease-Activated Receptors. In Handbook of
Cell Signaling; Bradshaw, R. A., Dennis, E. A., Eds.; Elsevier:
San Diego, CA, 2004; Vol. 1, pp 167-171.
(6) Coughlin, S. R. Protease-Activated Receptors in the Cardiovas-
cular System. Cold Spring Harbor Symp. Quant. Biol. 2002, 67,
197-208.
(7) Coughlin, S. R. Protease-Activated Receptors in Vascular Biol-
ogy. Thromb. Haemostasis 2001, 86, 298-307.
(8) Harker, L. A. Pathogenesis of Thrombosis. In Hematology;
Williams, W. J., Beutler, E., Erslev, A. J., Lictman, M. A., Eds.;
McGraw-Hill: New York, 1990; pp 1559-1568.
(9) Coller, B. S. The Role of Platelets in Arterial Thrombosis and
the Rationale for Blockade of Platelet GpIIb/IIIa Receptors as
Antithrombotic Therapy. Eur. Heart J. 1995, 16 (Suppl. L), 11-
15.
(10) Sambrano, G. R.; Weiss, E. J.; Zheng, Y.-W.; Huang, W.;
Coughlin, S. R. Role of Thrombin Signaling in Platelets in
Hemostasis and Thrombosis. Nature 2001, 413, 74-78.
(11) Jarvis, G. E.; Atkinson, B. T.; Frampton, J.; Watson, S. P.
Thrombin-Induced Conversion of Fibrinogen to Fibrin Results
in Rapid Platelet Trapping Which Is Not Dependent on Platelet
Activation or GPIb. Br. J. Pharmacol. 2003, 138, 574-583.
(12) Ruggeri, Z. M.; Dent, J. A.; Saldivar, E. Contribution of Distinct
Adhesive Interactions to Platelet Aggregation in Flowing Blood.
Blood 1999, 94, 172-178.
(13) Herman, A. G. Rationale for the Combination of Anti-Aggregat-
ing Drugs. Thromb. Res. 1998, 92 (1, Suppl. 1), S17-S21.
(14) Chackalamannil, S. Thrombin Receptor Antagonists as Novel
Therapeutic Targets. Curr. Opin. Drug Discovery Dev. 2001, 4,
417-427.
(15) Seiler, S. M.; Bernatowicz, M. S. Peptide-Derived Protease-
Activated Receptor-1 (PAR-1) Antagonists. Curr. Med. Chem.:
Cardiovasc. Hematol. Agents 2003, 1, 1.
(16) Vu, T.-K. H.; Hung, D. T.; Wheaton, V. I.; Coughlin, S. R.
Molecular Cloning of a Functional Thrombin Receptor Reveals
a Novel Proteolytic Mechanism of Receptor Activation. Cell 1991,
64, 1057-1068.
(17) Coughlin, S. R. Thrombin Signaling and Protease-Activated
Receptors. Nature 2000, 407, 258-264.
(18) Hung, D. T.; Vu, T.-H.; Nelken, N. A.; Coughlin, S. R. Thrombin-
Induced Events in Non-Platelet Cells Are Mediated by the
Unique Proteolytic Mechanism Established for the Cloned
Platelet Thrombin Receptor. J. Cell Biol. 1992, 116, 827-832.
JM0502236