C O M M U N I C A T I O N S
Scheme 2. Total Synthesis of the (-)-Maduropeptin Chromophore
A fellowship to K.K. from the Japan Society for the Promotion of
Science (JSPS) is gratefully acknowledged. We also thank Dr. John
E. Leet at Bristol-Myers Squibb for kindly providing the 1H NMR
spectra of the natural maduropeptin chromophore.
Supporting Information Available: Detailed experimental proce-
dures and spectroscopic data (1H and 13C NMR, FT-IR, and MS spectra)
for all new compounds, and X-ray crystallographic analysis data of 5.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Zein, N.; Solomon, W.; Colson, K. L.; Schroeder, D. R. Biochemistry
1995, 34, 11591. (b) Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Zein,
N.; Langley, D. R.; Lee, M. S.; Matson, J. A.; Doyle, T. W. J. Am. Chem.
Soc. 1994, 116, 9351. (c) Hanada, M.; Ohkuma, H.; Yonemoto, T.; Tomita,
K.; Ohbayashi, M.; Kamei, H.; Miyaki, T.; Konishi, M.; Kawaguchi, H.;
Forenza, S. J. Antibiot. 1991, 44, 403.
(2) (a) Xi, Z.; Goldberg, I. H. ComprehensiVe Natural Products Chemistry,
Eds.; Barton, D. H. R.; Nakanishi, K.; Meth-Cohn, O.; Pergamon: Oxford,
1999; Vol. 7, p 553. (b) Smith, A. L.; Nicolaou, K. C. J. Med. Chem.
1996, 39, 2103.
total synthesis of 1. In CH2Cl2, 1 exhibited atropisomerism that
resulted in an equilibrium mixture of isomers at rt (detected by
TLC analysis). Fortunately, in polar solvents such as CD3OD or
DMSO-d6, 1 existed exclusively as the natural-type atropisomer.
(3) For the structure and reactivities of nine-membered enediynes, see: (a)
Hirama, M.; Akiyama, K.; Das, P.; Mita, T.; Lear, M. J.; Iida, K.; Sato, I.;
Yoshimura, F.; Usuki, T.; Tero-Kubota, S. Heterocycles 2006, 69, 83, and
references therein. (b) Usuki, T.; Mita, T.; Lear, M. J.; Das, P.; Yoshimura,
F.; Inoue, M.; Hirama, M.; Akiyama, K.; Tero-Kubota, S. Angew. Chem.,
Int. Ed. 2004, 43, 5249. (c) Hirama, M. Pure Appl. Chem. 1997, 69, 525.
(d) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 8875.
(4) For synthetic studies of maduropeptin chromophore from our laboratories,
see: (a) Norizuki, Y.; Komano, K.; Sato, I.; Hirama, M. Chem. Commun.
2008, 5372. (b) Iso, K.; Inoue, M.; Kato, N.; Hirama, M. Chem. Asian J.
2008, 3, 447. (c) Komano, K.; Shimamura, S.; Inoue, M.; Hirama, M. J. Am.
Chem. Soc. 2007, 129, 14184. (d) Kato, N.; Shimamura, S.; Kikai, Y.;
Hirama, M. Synlett 2004, 2107. (e) Kato, N.; Shimamura, S.; Khan, S.;
Takeda, F.; Kikai, Y.; Hirama, M. Tetrahedron 2004, 60, 3161. (f) Khan,
S.; Kato, N.; Hirama, M. Synlett 2000, 1494.
(5) For synthetic studies of maduropeptin chromophore from other laboratories,
see: (a) Dai, W.-M.; Fong, K. C.; Lau, C. W.; Zhou, L.; Hamaguchi, W.;
Nishimoto, S. J. Org. Chem. 1999, 64, 682. (b) Roger, C.; Grierson, D.
Tetrahedron Lett. 1998, 39, 27. (c) Suffert, J.; Toussaint, D. Tetrahedron
Lett. 1997, 38, 5507. (d) Nicolaou, K. C.; Koide, K.; Xu, J.; Izraelewicz,
M. H. Tetrahedron Lett. 1997, 38, 3671. (e) Nicolaou, K. C.; Koide, K.
Tetrahedron Lett. 1997, 38, 3667. (f) Magnus, P.; Carter, R.; Davies, M.;
Elliott, J.; Pitterna, T. Tetrahedron 1996, 52, 6283.
1
Upon closer inspection, however, the H and 13C NMR spectra
of synthetic 1 were found to differ from those of the natural product.
1
In the case of H NMR, the differences (|∆δ| > 0.1 ppm) were
observed for the signals corresponding to the C9 glycoside (H10,
H1′′, and H5′′, see Supporting Information). Significant downfield
shifts (∆δ ) +1.33 and +2.42 ppm) were observed for the two
exchangeable protons of synthetic 1 (C10-OH and C2′′-OH,
respectively) that can be attributed to intramolecular hydrogen
bonding. Consequently, the proposed structure of the natural
chromophore of maduropeptin was revised as structure 1′, which
possesses the antipodal madurosamine moiety.
The synthesis of chromophore 1′ is shown in Scheme 2.
Stereoselective glycosylation using enantiomeric sugar moiety ent-
3, which was derived from D-serine, was conducted under Lewis
acidic conditions (30% yield based on 50% recovery of 7).
Deprotection of the benzoyl group of 9 with DIBAL, followed by
the removal of all TES groups by Bu4NF in THF, afforded the
desired chromophore 1′. Although atropisomeric equilibration was
also observed for synthetic 1′, the natural type isomer was
(6) For the structures of related chromoprotein antibiotics, C-1027, see: (a)
Iida, K.; Fukuda, S.; Tanaka, T.; Hirama, M.; Imajo, S.; Ishiguro, M.;
Yoshida, K.; Otani, T. Tetrahedron Lett. 1996, 37, 4997. (b) Iida, K.; Ishii,
T.; Hirama, M.; Otani, T.; Minami, Y.; Yoshida, K. Tetrahedron Lett. 1993,
34, 4079. (c) Yoshida, K.; Minami, Y.; Azuma, R.; Saeki, M.; Otani, T.
Tetrahedron Lett. 1993, 34, 2637. Kedarcidin: (d) Ogawa, K.; Koyama,
Y.; Ohashi, I.; Sato, I.; Hirama, M. Angew. Chem., Int. Ed. 2009, 48, 1110.
(e) Ren, F.; Hogan, P. C.; Anderson, A. J.; Myers, A. G. J. Am. Chem.
Soc. 2007, 129, 5381. (f) Kawata, S.; Ashizawa, S.; Hirama, M. J. Am.
Chem. Soc. 1997, 119, 12012. (g) Leet, J. E.; Schroeder, D. R.; Hofstead,
S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S. E.; Doyle, T. W.;
Matson, J. A. J. Am. Chem. Soc. 1992, 114, 7946.
1
predominant in DMSO-d6. H and 13C NMR spectra, as well as
HRMS and NOE correlations, were in good agreement with those
of the natural product.
(7) The structure and absolute configuration of 5 was determined by X-ray
crystallographic analysis (see Supporting Information).
In summary, the first total synthesis and structure revision of
(-)-maduropeptin chromophore were successfully accomplished.
Our studies involved the synthesis and characterization of 1 and
its diastereomer 1′ possessing the antipodal madurosamine. The
spectroscopic data of 1′ were in good agreement with those of the
natural product. The absolute structure of the chromophore,
however, remains yet to be determined.10,11
(8) (a) Oki, M. Top. Stereochem. 1983, 14, 1. (b) Oki, M. The Chemistry of
Rotational Isomers; Hafner, K.; Lehn, J.-M.; Rees, C. W.; Schleyer, P.
von R.; Trost, B. M.; Zahradn´ık, R., Eds.; Springer-Verlag: Berlin, 1993.
(c) Myers, A. G.; Hurd, A. R.; Hogan, P. C. J. Am. Chem. Soc. 2002, 124,
4583.
(9) (a) Schmidt, R. R. Pure Appl. Chem. 1989, 61, 1257. (b) Schmidt, R. R.
Angew. Chem., Int. Ed. Engl. 1986, 25, 212.
(10) NMR spectra were kind gifts from Dr. John E. Leet (Bristol-Myers Squibb);
we were informed that any data relating to the chirality, such as [R]D and
CD, for the chromophore and/or degraded products are currently not
available.1b
Acknowledgment. This work was financially supported by a
Grant-in-Aid for Specially Promoted Research from the Ministry
of Education, Culture, Sports, Science, and Technology (MEXT),
and by SORST, Japan Science and Technology Agency (J.S.T.).
(11) For a discussion from a view of the hypothetical biosynthetic pathway,
see: Van Lanen, S. G.; Oh, T.-j.; Liu, W.; Wendt-Pienkowski, E.; Shen, B.
J. Am. Chem. Soc. 2007, 129, 13082.
JA905397P
9
J. AM. CHEM. SOC. VOL. 131, NO. 34, 2009 12073