˜
A. Antinolo et al. / Polyhedron 18 (1999) 959–968
967
Table 5
positional parameters of calculated hydrogen atoms, aniso-
tropic thermal parameters, and bond distances and angles.
Ordering information is given on any current masthead
page.
˚
Selected bond distances (A) and angles (8) with standard deviations for
complex [Ir(SC6F5)(O2)(CO)(PPh3)2]
Ir1–P1
Ir1–P2
Ir1–S1
Ir1–C1
Ir1–O2
Ir1–O3
O2–O3
2.376(4)
2.382(5)
2.407(7)
1.69(0)
2.02(3)
2.02(2)
1.42(3)
O2–Ir1–O3
C1–Ir1–O3
C1–Ir1–O2
S1–Ir1–O3
S1–Ir1–O2
Ir1–O2–O3
Ir1–O3–O2
41.2(8)
158.9(5)
118.0(5)
106.4(6)
147.0(6)
69(1)
Acknowledgements
70(1)
Financial support from the EU (Contract CI1*-
CT930329), DGAPA-IN121698 UNAM and CONACYT
(25108E) are gratefully acknowledged.
SC6H4F-4 rings dp 52122.3 and 2122. 4 ppm. 1H spectra
of 4c show absorptions due to the C6H5 and SC6H4F-4
rings and a triplet due to the hydride ion at d5215.7 ppm
References
2
with a H-P coupling constant JP-H 510.9 Hz.
As with all compounds of these series, FAB mass
spectrometry of compounds 4a–c show the expected
molecular ions and a decomposition patterns reflecting loss
of CO, PPh3 and the thiolate ligand.
[1] I. Fonseca, E. Hernandez, J. Sanz-Aparicio, P. Terreros, H. Torrens,
J. Chem. Soc., Dalton Trans. (1994) 781.
[2] T. Gaines, D.M. Roundhill, Inorg. Chem. 13 (1974) 2521.
[3] T.B. Rauchfuss, D.M. Roundhill, J. Am. Chem. Soc. 97 (1975)
3386.
Dioxygen uptake on trans-[Ir(SR)(CO)(PPh3 )2 ] deriva-
tives. Exposed to the air, solutions of trans-[Ir-
(SRF)(CO)(PPh3)2] 1a–d react with molecular oxygen
giving rise to the [Ir(SRF)(O2)(CO)(PPh3)2] (R5C6F5,
5a, C6HF4-4 5b, C6H4F-4 5c, or C6H4Me-2 5d) complex-
es.
[4] T.B. Rauchfuss, J.S. Shu, D.M. Roundhill, Inorg. Chem. 15 (1976)
2096.
[5] P. Kalck, J.J. Bonnet, R. Poilblanc, J. Am. Chem. Soc. 104 (1982)
3069.
[6] J. Devillers, J.J. Bonnet, D. Montauzon, J. Galy, R. Poilblanc, Inorg.
Chem. 19 (1980) 154.
[7] G. Dance, Polyhedron 5 (1986) 1037.
Raman spectra of trans-[Ir(SC6F5)(CO)(PPh3)2] 1a and
[Ir(SC6F5)(O2)(CO)(PPh3)2] 5a are identical on the re-
gion 2000–600 cm21 region. Additional, not assigned,
absorptions are observed however at 552.4 cm21 for 1a
and at 526.5, 482.3, 434.9 and 327.9 cm21 for 5a.
The crystal and molecular structure of complex 5a has
been determined by X-ray diffraction methods. Fig. 3
shows a perspective view of this molecule indicating the
atom numbering scheme. Table 5 collects selected bond
distances and angles of complex 5a.
[8] M.T. Ashby, Comments Inorg. Chem. 10 (1990) 297.
[9] R.M. Catala, D. Cruz-Garritz, P. Sosa, P. Terreros, H. Torrens, A.
Hills, D.L. Hughes, R. Richards, J. Organomet. Chem. 359 (1989)
219.
[10] J.S. Thompson, T. Sorrell, T.J. Markas, J.A. Ibers, J. Am. Chem.
Soc. 101 (1979) 4193.
[11] J.J. Garcia, H. Torrens, H. Adams, N.A. Bailey, A. Shancklady,
P.M. Maitlis, J. Chem. Soc., Dalton Trans. (1993) 1529.
[12] J.J. Garcia, C. Sierra, H. Torrens, Tetrahedron Lett. 37 (1996) 6097.
[13] J.C. Bayon, P. Esteban, J. Real, C. Claver, A. Polo, A. Ruiz, S.
Castillon, J. Organomet. Chem. 403 (1991) 393.
[14] A. Polo, C. Claver, S. Castillon, A. Ruiz, J.C. Bayon, J. Real, C.
Meali, D. Massi, Organometallics 11 (1992) 3525.
[15] K. Osakada, K. Hataya, T. Yamamoto, Inorg. Chem. 32 (1993)
2360.
[16] C.A. Miller, T.S. Janik, C.H. Lake, L.M. Toomey, M.R. Churchill,
J.D. Atwood, Organometallics 13 (1994) 5080.
[17] H. Okamura, M. Miura, H. Takei, Tetrahedron Lett. 1 (1979) 43.
[18] H. Okamura, M. Miura, H. Takei, Tetrahedron Lett. 36 (1979) 3425.
[19] M. Murahashi, K. Yamamura, K. Yanagisawa, K. Mita, K. Kondo, J.
Org. Chem. 44 (1979) 2408.
[20] M. Kosugi, T. Shimizu, T. Migita, Chem. Lett. (1978) 13.
[21] T. Migita, Y. Asami, J. Kato, M. Kosugi, Bull. Chem. Soc. Jap. 53
(1980) 1385.
[22] R.O. Hutchins, K. Learn, J. Org. Chem. 48 (1982) 4380.
[23] E. Wenkert, T.W. Ferreira, E.L. Michelotti, J. Chem. Soc., Chem.
Comm. (1979) 637.
The phenyl rings attached to P and S atoms present a
rather bad geometry as well as large standard deviations
owing to the poor quality of diffraction data (as it is also
reflected in the relatively high values of R factors).
The phosphine ligands are trans to each other whereas
the O2 moiety shows the symmetrical side-on arrangement
expected for a peroxo compound. The co-ordination may
be described as trigonal-bipyramid with the diatomic
molecule p-bonded at equatorial positions. However, a
distorted octahedral assignment equally tenable
Variable temperature 19Fh21Hj NMR experiments
show that uptake of molecular oxygen by
[Ir(SC6F5)(CO)(PPh3)2] 1a is not a reversible process. A
linear relation between ln(intensity) and the reaction time,
indicates that the conversion of 1a to 5a by oxygen uptake
is a first order reaction with an activation energy Ea5
[24] E. Wenkert, M.H. Leftin, E.L. Michelotti, J. Chem. Soc., Chem.
Comm. (1984) 617.
[25] E. Wenkert, J.M. Hanna, M.H. Leftin, E.L. Michelotti, K.T. Potts, D.
Usifer, J. Org. Chem. 50 (1985) 1125.
[26] M. Tiecco, L. Testaferri, M. Tingoli, P. Chianelli, E. Wenkert,
Tetrahedron Lett. 23 (1982) 4629.
24.54 Kcalmol21
.
[27] N. Osakada, T. Yamamoto, A. Yamamoto, Tetrahedron Lett. 27
(1987) 6321.
Supplementary Material Available
[28] H. Kwart, G.C.A. Schuit, B.C. Gates, J. Catal. 61 (1980) 128.
[29] F. Zaera, E.B. Kollin, J.L. Gland, Surf. Sci. 184 (1987) 75.
Tables of Crystal and intensity measurement data,