Organic & Biomolecular Chemistry
Page 4 of 4
1159; (d) J. F. Soulé, H. Miyamura and S. Kobayashi, J. Am. Chem.
Soc., 2011, 133, 18550; (e) Y. Wang, D. P. Zhu, L. Tang, S. J.
underway in our laboratory.
This work was supported by the National Natural Science
Foundation of China (21172185, 21372187), the Research
Fund for the Doctoral Program of Higher Education of China,
Ministry of Education of China (20124301110005) and the
Hunan Provincial Innovative Foundation for Postgraduate
(CX2014B258).
DOI: 10.1039/C5OB00915D
M. Trincado, K. Kühlein and H. Grützmacher, Chem. Eur. J., 2011,
70
75
47, 11905; (g) C. Chen, Y. Zhang and S. H. Hong, J. Org. Chem.,
2011, 76, 10005; (h) J. Zhang, M. Senthilkumar, S. C. Ghosh and S.
H. Hong, Angew. Chem. Int. Ed., 2010, 49, 6391; (i) S. C. Ghosh, S.
Muthaiah, Y. Zhang, X. Xu and S. H. Hong, Adv. Synth. Catal.,
2009, 351, 2643; (j) T. Zweifel, J. Naubron and H. Grützmacher,
Angew. Chem. Int. Ed., 2009, 48, 559; (k) K. Shimizu, K. Ohshima
and A. Satsuma, Chem. Eur. J., 2009, 15, 9977; (l) A. Watson, A.
Maxwell, J. M. J. Williams, Org. Lett., 2009, 11, 2667; (m) L. U.
Nordstrøm, H. Vogt and R. Madsen, J. Am. Chem. Soc., 2008, 130,
17672.
5
Notes and references
10 aKey Laboratory of Environmentally Friendly Chemistry and
Application of Ministry of Education, College of Chemistry,
Xiangtan University, Xiangtan 411105, China;Fax: (+86)-731-
58292251; e-mail: gjdeng@xtu.edu.cn.
80 16 For reviews on dehydrogenative transfromation, see: (a) C.
Gunanathan, D. Milstein, Acc. Chem. Res., 2011, 44, 588; (b) G. E.
Dobereiner and R. H. Grabtree, Chem. Rev., 2010, 110, 681.
17 B. Gnanaprakasam and D. Milstein, J. Am. Chem. Soc., 2011, 133,
1682.
85 18 B. Shen, D. M. Makley and J. N. Johnston, Nature, 2010, 465, 1027.
19 (a) J. J. Shi, G. G. Zhao, X. W. Wang, H. E. Xu, and W. Yi, Org.
Biomol. Chem., 2014, 12, 6831; (b) A. S. Kumar, P. V. Rao and R.
Nagarajan, Org. Biomol. Chem., 2012, 10, 5084; (c) A. S. Kumar
and R. Nagarajan, Org. Lett., 2011, 13, 1398; (d) Q. Shuai, G. J.
b
Key Laboratory of Molecular Recognition and Function, Institute of
15 Chemistry, Chinese Academy of Sciences, Beijing 100080, China.
† Electronic Supplementary Information (ESI) available: See
DOI: 10.1039/b000000x/
Notes and references
1
(a) J. M. Humphrey and A. R. Chamberlin, Chem. Rev., 1997, 97,
2243; (b) R. C. Larock, Comprehensive Organic Transformation,
VCH, New York, 1999.
90
Deng, Z. J. Chua, D. S. Bohle and C. J. Li, Adv. Synth. Catal., 2010,
352, 632; (e) S. Lavy, J. J. Miller, M. Pazicky, A. S. Rodrigues and
M. Limbach, Adv. Synth. Catal., 2010, 352, 2993; (f) Q. Wang and
S. L. Schreiber, Org. Lett., 2009, 11, 5178; (g) J. M. Lee, D. S. Ahn,
S. K. Kim and S. Chang, J. Am. Chem. Soc., 2006, 128, 12954.
20
25
30
2
3
M. B. Smith and J. March, March’s Advanced Organic Chemistry,
6th ed., Wiley, Weinheim, Germany, 2007.
(a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606; (b) C.
Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827; (c) A. El-
Faham and F. Albericio, Chem. Rev., 2011, 111, 6557; (d) M. B.
Smith, Compendium of Organic Synthetic Methods, Wiley, New
York, 2001. For excellent examples on waste-free amidation of
carboxylic acids with amines, see: (e) C. Allen, A. Chhatwal and J.
M. J. Williams, Chem. Commun., 2012, 48, 666; (f) R. Al-Zoubi, O.
Marion and D. G. Hall, Angew. Chem. Int. Ed., 2008, 47, 2876.
(a) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471; (b) P.
Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.
95 20 Oxidative amidation of methylarenes with amines could be realized
using excess substrates and strong oxidant: (a) K. Azizi, M. Karimi
and A. Heydari, RSC. Adv., 2014, 4, 31817; (b) J. B. Feng, D. Wei, J.
L. Gong, X. Qi and X. F. Wu, Tetrahedron Lett., 2014, 55, 5082; (c)
B. N. Du and P. P. Sun, Sci. China Chem., 2014, 57, 1176; (d) T.
100
Wang, L. Yuan, Z. Zhao, A. Shao, M. Gao, Y. F. Huang, F. Xiong,
H. Zhang and J. F. Zhao, Green Chem., 2015, 17, 2741.
21 Methylarenes also could be oxidized into monoamides in low yields
using manganese oxide as the oxidant, see: (a) Y. Wang, K.
Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed., 2012, 51, 7250;
(b) R. Vanjari, T. Guntreddi and K. N. Singh, Org. Lett., 2013, 15,
4908.
22 Substituted quinoline-2-carboxamides showed high activity against
M. tuberculosis. The current existed methods to prepare them are
mainly based on amidation of the corresponding quinaldic acids or
aldehydes, see: (a) J. Du, K. Luo and X. L. Zhang, RSC Adv., 2014,
4, 54539; (b) T. Gonec, P. Bobal, J. Sujan, M. Pesko, J. Guo, K.
Kralova, L. Pavlacka, L. Vesely, E. Kreckova, J. Kos, A. Coffey, P.
Kollar, A. Imramovsky, L. Placek and J. Jampilek, Molecules, 2012,
17, 613; (c) J. W. Davis, J. Org. Chem., 1959, 24, 1691.
4
5
C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405.
105
110
35 6 W. J. Woo and C. J. Li, J. Am. Chem. Soc., 2006, 128, 13064.
7
8
9
(a) C. Chen, M. H. Kim and S. H. Hong, Org. Chem. Front., 2015, 2,
241; (b) S. Muthaiah, S. C. Ghosh, J. E. Lee, C. Chen, J. Zhang and
S. H. Hong, J. Org. Chem., 2010, 75, 3002.
(a) Y. Suto, N. Yamagiwa and Y. Torisawa, Tetrahedron Lett., 2008,
49, 5732; (b) Y. Tamaru, Y. Yamada and Z. Yoshida, Synthesis,
1983, 474.
(a) W. Dai, Y. C. Liu, T. Tong, X. W. Li and F. Luo, Chin. J. Catal.,
2014, 35, 1012; (b) R. Rodriguezlugo, M. Trincado and
Grützmacher, ChemCatChem., 2013, 5, 1079; (c) J. Chan, K. D.
Baucorn and J. A. Murry, J. Am. Chem. Soc., 2007, 129, 14106; (d)
A. Tillack, I. Rudloff and M. Beller, Eur. J. Org. Chem., 2001, 523.
40
45
50
55
115 23 F. Xiao, S. Q. Chen, Y. Chen, H. W. Huang and G. J. Deng, Chem.
Commun., 2015, 51, 652.
24 H. Wang, Y. Wang, D. D. Liang, L. Y. Liu, J. Zhang and Q. Zhu,
Angew. Chem. Int. Ed., 2011, 50, 5678.
25. F. T. Du and J. X. Ji, Chem. Sci., 2012, 3, 460.
120
10 G. L. Li, K. K. Kung and M. K. Wong, Chem. Commun., 2012, 48,
4112.
11 (a) Z. Q. Guo, Q. Liu, X. H. Wei, Y. B. Zhang, H. B. Tong, J. B.
Chao, J. P. Guo and D. S. Liu, Organometallics, 2013, 32, 4677; (b)
J. A. Thomson and L. L. Schafer, Dalton Trans., 2012, 41, 7897; (c)
J. F. Wang, J. M. Li, F. Xu and Q. Shen, Adv. Synth. Catal., 2009,
351, 1363; (d) C. W. Qian, X. M. Zhang, J. M. Li, F. Xu, Y. Zhang
and Q. Shen, Organometallics, 2009, 28, 3856; (e) J. M. Li, F. Xu,
Y. Zhang and Q. Shen, J. Org. Chem., 2009, 74, 2575; (f) S. Seo
and T. J. Marks, Org. Lett., 2008, 10, 317.
12 (a) H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007, 129, 13796; (b)
J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 2007, 129, 13798.
13 T. Naota and S. I. Murahashi, Synlett, 1991, 693.
60 14 C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007, 317,
790.
15 For selected reviews on amide synthesis from alcohols and amines,
see: (a) C. Chen and S. H. Hong, Org. Biomol. Chem., 2011, 9, 20;
(b) D. Milestein, Top. Catal., 2010, 53, 915. For selected examples,
65
see: (c) H. X. Zeng and Z. B. Guan, J. Am. Chem. Soc., 2011, 133,
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]