898
M.J. Koetsier et al. / FEBS Letters 585 (2011) 893–898
J.M. (2010) The Penicillium chrysogenum aclA gene encodes a broad-substrate-
specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-
chain precursor for cephem antibiotics. Fungal Genet. Biol. 47, 33–42.
[14] Magnes, C., Sinner, F.M., Regittnig, W. and Pieber, T.R. (2005) LC/MS/MS
method for quantitative determination of long-chain fatty acyl-CoAs. Anal.
Chem. 77, 2889–2894.
[15] Arnold, K., Bordoli, L. and Schwede, T. (2006) The SWISS-MODEL Workspace: A
web-based environment for protein structure homology modelling.
Bioinformatics 22, 195–201.
(Integration of Biosynthesis and Organic Synthesis) Program of
Advanced Chemical Technologies for Sustainability (ACTS),
supported by the Dutch Ministry of Economic Affairs and The
Netherlands Organization for Scientific Research (NWO). Part of
this research was funded by NWO through an ECHO Grant.
References
[16] Nielsen, M., Lundegaard, C., Lund, O. and Petersen, T.N. (2010) CPHmodels-3.0
–
remote homology modeling using structure guided sequence profiles.
[1] Kunau, W.H., Dommes, V. and Schulz, H. (1995) Beta-oxidation of fatty acids in
mitochondria, peroxisomes, and bacteria: a century of continued progress.
Prog. Lipid. Res. 34, 267–342.
Nucleic Acids Res. 38, W576–581.
[17] Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D. and
Karplus, K. (2009) Improving physical realism, stereochemistry, and side-
chain accuracy in homology modeling: four approaches that performed well in
CASP8. Proteins 77, 114–122.
[18] Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K. and
Kato, H. (2006) Structural basis for the spectral difference in luciferase
bioluminescence. Nature 440, 372–376.
[2] Anterola, A.M. and Lewis, N.G. (2002) Trends in lignin modification:
a
comprehensive analysis of the effects of genetic manipulations/mutations on
lignification and vascular integrity. Phytochemistry 61, 221–294.
[3] Koetsier, M.J., Jekel, P.A., van den Berg, M.A., Bovenberg, R.A.L. and Janssen, D.B.
(2009) Characterization of
a phenylacetate-CoA ligase from Penicillium
chrysogenum. Biochem. J. 417, 467–476.
[19] Auld, D.S., Lovell, S., Thorne, N., Lea, W.A., Maloney, D.J., Shen, M., Rai, G.,
Battaile, K.P., Thomas, C.J., Simeonov, A., Hanzlik, R.P. and Inglese, J. (2010)
Molecular basis for the high-affinity binding and stabilization of firefly
luciferase by PTC124. Proc. Natl. Acad. Sci. USA 107, 4878–4883.
[20] Franks, N.P., Jenkins, A., Conti, E., Lieb, W.R. and Brick, P. (1998) Structural
basis for the inhibition of firefly luciferase by a general anesthetic. Biophys. J.
75, 2205–2211.
[21] Hu, Y., Gai, Y., Yin, L., Wang, X., Feng, C., Feng, L., Li, D., Jiang, X.N. and Wang,
D.C. (2010) Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase
shed light on its enzymatic mechanisms. Plant Cell 22, 3093–3104.
[22] Morris, G.M., Goodsell, D.S., Haliday, R.S., Huey, R., Hart, W.E., Belew, R.K.
[4] Knights, K.M. and Drogemuller, C.J. (2000) Xenobiotic-CoA ligases: kinetic and
molecular characterization. Curr. Drug Metab. 1, 49–66.
[5] Conti, E., Stachelhaus, T., Marahiel, M.A. and Brick, P. (1997) Structural basis
for the activation of phenylalanine in the non-ribosomal biosynthesis of
gramicidin S. EMBO J. 16, 4174–4183.
[6] Jakubowski, H. (1998) Aminoacylation of coenzyme A and pantetheine by
aminoacyl-tRNA synthetases: possible link between noncoded and coded
peptide synthesis. Biochemistry 37, 5147–5153.
[7] Linne, U., Schäfer, A., Stubbs, M.T. and Marahiel, M.A. (2007) Aminoacyl-
coenzyme A synthesis catalyzed by adenylation domains. FEBS Lett. 581, 905–
910.
[8] Ullan, R.V., Casqueiro, J., Banuelos, O., Fernandez, F.J., Gutierrez, S. and Martin,
J.F. (2002) A novel epimerization system in fungal secondary metabolism
involved in the conversion of isopenicillin N into penicillin N in Acremonium
chrysogenum. J. Biol. Chem. 277, 46216–46225.
[9] Van den Berg, M.A., Albang, R., Albermann, K., Badger, J.H., Daran, J.M.,
Driessen, A.J.M., Garcia-Estrada, C., Fedorova, N.D., Harris, D.M., Heijne, W.H.,
Joardar, V., Kiel, J.A.K.W., Kovalchuk, A., Martín, J.F., Nierman, W.C., Nijland,
J.G., Pronk, J.T., Roubos, J.A., van der Klei, I.J., van Peij, N.N., Veenhuis, M., von
Döhren, H., Wagner, C., Wortman, J. and Bovenberg, R.A.L. (2008) Genome
sequencing and analysis of the filamentous fungus Penicillium chrysogenum.
Nat. Biotechnol. 26, 1161–1168.
[10] Martınez-Blanco, H., Reglero, A., Fernandez-Valverde, M., Ferrero, M.A.,
Moreno, M.A., Penalva, M.A. and Luengo, J.M. (1992) Isolation and
characterization of the acetyl-CoA synthetase from Penicillium chrysogenum:
involvement of this enzyme in the biosynthesis of penicillins. J. Biol. Chem.
267, 5474–5481.
[11] Kiel, J.A.K.W., van der Klei, I.J., van den Berg, M.A., Bovenberg, R.A.L. and
Veenhuis, M. (2005) Overproduction of a single protein, Pc-Pex11p, results in
2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal
Genet. Biol. 42, 154–164.
and Olson, A.J. (1998) Automated docking using
a Lamarckian genetic
algorithm and empirical binding free energy function. J. Comput. Chem. 19,
1639–1662.
[23] Jakubowski, H. (2000) Amino acid selectivity in the aminoacylation of
coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. J. Biol.
Chem. 275, 34845–34848.
[24] Luo, L., Burkart, M.D., Stachelhaus, T. and Walsh, C.T. (2001) Substrate
recognition and selection by the initiation module PheATE of gramicidin S
synthetase. J. Am. Chem. Soc. 123, 11208–11218.
[25] Roy, H., Ling, J., Irnov, M. and Ibba, M. (2004) Post-transfer editing in vitro and
in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J. 23,
4639–4648.
[26] Roy, H., Ling, J., Alfonzo, J. and Ibba, M. (2005) Loss of editing activity during
the evolution of mitochondrial phenylalanyl-tRNA synthetase. J. Biol. Chem.
280, 38186–38192.
[27] Walker, K., Fujisaki, S., Long, R. and Croteau, R. (2002) Molecular cloning and
heterologous expression of the C-13 phenylpropanoid side chain-CoA
acyltransferase that functions in Taxol biosynthesis. Proc. Natl. Acad. Sci.
USA 99, 12715–12720.
[28] Herrmann, G., Selmer, T., Jessen, H.J., Gokarn, R.R., Selifonova, O., Gort, S.J. and
Buckel, W. (2005) Two beta-alanyl-CoA:ammonia lyases in Clostridium
propionicum. FEBS J. 272, 813–821.
[29] Belshaw, P.J., Walsh, C.T. and Stachelhaus, T. (1999) Aminoacyl-CoAs as probes
of condensation domain selectivity in nonribosomal peptide synthesis.
Science 284, 486–489.
[12] Heuts, D.P.H.M., van Hellemond, E.W., Janssen, D.B. and Fraaije, M.W. (2007)
Discovery, characterization, and kinetic analysis of an alditol oxidase from
Streptomyces coelicolor. J. Biol. Chem. 282, 20283–20291.
[13] Koetsier, M.J., Gombert, A.K., Fekken, S., Bovenberg, R.A.L., van den Berg, M.A.,
Kiel, J.A.K.W., Jekel, P.A., Janssen, D.B., Pronk, J.T., van der Klei, I.J. and Daran,