Reactions of compound 3a
Acknowledgements
With trifluoromethanosulfonic acid. In an NMR tube a solu-
tion of compound 3a (0.035 g, 0.064 mmol) in C6D6 (0.4 cm3)
was treated with CF3SO3H (0.067 cm3 of a 0.95 M solution in
diethyl ether, 0.064 mmol) at room temperature. An instant
We thank the Fonds der Chemischen Industrie, the Deutsche
Forschungsgemeinschaft (DFG) (Grant SFB 347) and the
European Commission (Contract ERBFMBICT960698) for
financial support. J. G.-R. is particularly grateful to the EC for
a postdoctoral grant and to the DFG for a research contract.
We are also grateful to Mrs M. L. Schäfer, Dr W. Buchner and
Dr R. Bettermann for NMR spectra, NMR simulations and
valuable discussions, Mrs R. Schedl and Mr C. P. Kneis for
elemental analysis and DTA measurements, Dr G. Lange and
Mr F. Dadrich for mass spectra, and Degussa AG for various
gifts of chemicals.
change from red-violet to dark violet was observed. The 1H, 19
F
and 31P-{1H} NMR spectra of the solution indicated a quant-
itative conversion of 3a into 2a.
With acetic acid. In an NMR tube a solution of compound
3a (0.043 g, 0.079 mmol) in C6D6 (0.4 cm3) was treated with
acetic acid (0.053 cm3 of a 1.5 M solution in C6D6, 0.08 mmol)
at room temperature. After 10 min the NMR spectra were
recorded at room temperature: δH (200 MHz) 11.3 (br s), 7.15–
7.04 (4 H, m, ortho- and meta-H of C6H5), 6.85 [1 H, t, J(HH)
6.9, para-H of C6H5], 2.45 (6 H, m, PCHCH3), 1.88 (3 H, s,
References
1 N. M. Doherty and N. W. Hoffman, Chem. Rev., 1991, 91, 553; E. F.
Murphy, R. Murugavel and H. W. Roesky, Chem. Rev., 1997, 97,
3425.
2 V. V. Grushin, Angew. Chem., 1998, 110, 1042; Angew. Chem., Int.
Ed., 1998, 37, 994.
3 R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533; J. Chem. Educ.,
1968, 45, 581.
4 D. M. Branan, N. W. Hoffman, E. A. McElroy, N. C. Miller, D. L.
Ramage, A. F. Schott and S. H. Young, Inorg. Chem., 1987, 26,
2915; F. Araghizadeh, D. M. Branan, N. W. Hoffman, J. H. Jones,
E. A. McElroy, N. C. Miller, D. L. Ramage, A. Battaglia Salazar
and S. H. Young, Inorg. Chem., 1988, 27, 3752.
5 M. C. Pilon and V. V. Grushin, Organometallics, 1998, 17, 1774.
6 N. M. Doherty and S. C. Critchlow, J. Am. Chem. Soc., 1987, 109,
7906; J. E. Veltheer, P. Burger and R. G. Bergman, J. Am. Chem.
Soc., 1995, 117, 12478; D. Huang and K. G. Caulton, J. Am. Chem.
Soc., 1997, 119, 3185.
CH CO ), 1.63 [1 H, dt, J(RhH) 1.3, J(PH) 3.1, C᎐CH] and
᎐
3
2
1.25 [36 H, dvt, J(HH) 6.6, N 13.9 Hz, PCHCH3]; δF (188.3
MHz) Ϫ213.9 (br s); δP (81.0 MHz) 45.4 [d, J(RhP) 140.0 Hz].
An analogous experiment was performed using d8-toluene as
solvent in order to measure the NMR spectra at low temper-
ature: δH (400 MHz, Ϫ70 ЊC) 13.9 (br s, CH3CO2H), 12.0 [br d,
J(FH) ca. 420 Hz, FHF–Rh], 7.20–6.93 (5 H, m, C6H5), 2.43
(6 H, br m, PCHCH3), 1.97 (3 H, br s, CH3CO2), 1.68 (1 H, br
m, Rh᎐C᎐CH) and 1.25 (36 H, br m, PCHCH ); δ (376.5
᎐ ᎐
3
F
MHz, Ϫ83 ЊC) Ϫ179.1 [br dd, J(FF) 101, J(FH) 418 Hz, FHF–
Rh], Ϫ214.8 (br m, F–Rh) and Ϫ228.7 (br m, FHF–Rh);
δP (162.0 MHz, Ϫ83 ЊC) 44.4 [br d, J(RhP) 139.0] and 41.2 [br
d, J(RhP) 137.3 Hz].
7 J. Krüger and E. M. Carreira, J. Am. Chem. Soc., 1998, 120, 837.
8 H. Werner, R. Wiedemann, M. Laubender, J. Wolf and
B. Windmüller, Chem. Commun., 1996, 1413.
9 J. Gil-Rubio, M. Laubender and H. Werner, Organometallics, 1998,
17, 1202.
10 O. Gevert, J. Wolf and H. Werner, Organometallics, 1996, 15, 2806.
11 H. Werner, M. Bosch, M. E. Schneider, C. Hahn, F. Kukla,
M. Manger, B. Windmüller, B. Weberndörfer and M. Laubender,
J. Chem. Soc., Dalton Trans., 1998, 3549.
12 F. J. Garcia Alonso, A. Höhn, J. Wolf, H. Otto and H. Werner,
Angew. Chem., 1985, 97, 401; Angew. Chem., Int. Ed. Engl., 1985,
24, 406; H. Werner, F. J. Garcia Alonso, H. Otto and J. Wolf,
Z. Naturforsch., Teil B, 1988, 43, 722; H. Werner and U. Brekau,
Z. Naturforsch., Teil B, 1989, 44, 1438; T. Rappert, O. Nürnberg,
N. Mahr, J. Wolf and H. Werner, Organometallics, 1992, 11, 4156.
13 H. Werner, J. Wolf and A. Höhn, J. Organomet. Chem., 1985, 287,
395.
14 P. Binger, J. Haas, G. Glaser, R. Goddard and C. Krüger, Chem.
Ber., 1994, 127, 1927.
15 H. L. M. van Gaal and F. L. A. van den Bekerom, J. Organomet.
Chem., 1977, 134, 237.
16 K. Wang, G. P. Rosini, S. P. Nolan and A. S. Goldman, J. Am. Chem.
Soc., 1995, 117, 5082.
17 M. D. Fryzuk and W. E. Piers, Polyhedron, 1988, 7, 1001.
18 H. L. M. van Gaal and J. P. J. Verlaan, J. Organomet. Chem.,
1977, 133, 93; I. J. Colquhoun and W. McFarlane, J. Magn. Reson.,
1982, 46, 525.
19 I. Kovacik, O. Gevert, H. Werner, M. Schmittel and R. Söllner,
Inorg. Chim. Acta, 1998, 275–276, 435.
20 C. Cauletti, F. Grandinetti, G. Granozzi, M. Casarin, H. Werner,
J. Wolf, A. Höhn and F. J. García Alonso, J. Organomet. Chem.,
1990, 382, 445.
21 J. T. Poulton, M. P. Sigalas, K. Folting, W. E. Streib, O. Eisenstein
and K. G. Caulton, Inorg. Chem., 1994, 33, 1476.
22 B. T. Heaton, J. A. Iggo, C. Jakob, J. Nadarajah, M. A. Fontaine,
R. Messere and A. F. Noels, J. Chem. Soc., Dalton Trans., 1994,
2875.
23 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National
Laboratory, Oak Ridge, TN, 1976.
With phenylacetylene. A solution of compound 3a (0.031 g,
0.057 mmol) in C6D6 (0.4 cm3) was treated with phenylacetylene
(0.052 cm3 of a 1.1 M solution in C6D6, 0.057 mmol) and an
excess of anhydrous Na2CO3 (ca. 0.1 g) at room temperature.
The mixture was stirred for 30 min at room temperature which
led to a change from red-violet to green. The solution was then
transferred to an NMR tube. The 1H and 31P-{1H} NMR
spectra indicated a quantitative conversion of 3a into 13.27
Crystallography
Single crystals of complex 9 were grown from pentane (Ϫ25 ЊC).
Crystal data (from 25 reflections, 10 < θ < 15Њ): monoclinic,
space group P21/c (no. 14); a = 19.401(9), b = 8.5915(9),
c = 15.175(7) Å, β = 112.59(1)Њ, V = 2335(2) Å3, Z = 4,
Dc = 1.338 g cmϪ3, µ(Mo-Kα) = 0.868 mmϪ1; crystal size
0.12 × 0.10 × 0.03 mm; Enraf-Nonius CAD4 diffractometer,
graphite monochromator, zirconium filter (factor 16.5);
T = 173(2) K, ω–θ scans, maximum 2θ = 50Њ; 4191 reflections
measured, 3875 independent, 2886 with I > 2σ(I), 3869 used
for refinement. Data reduction was performed with SDP.32
Intensity data were corrected for Lorentz-polarization effects.
Linear decay (loss of intensity 6.5%) and empirical absorption
corrections (ψ scans) were applied (minimum transmission
94.34%).33 The structure was solved by direct methods
(SHELXS 86).34 Atomic co-ordinates and anisotropic thermal
displacement parameters of the non-hydrogen atoms were
refined anisotropically by full-matrix least squares on F2 (241
parameters; SHELXL 93).35 The positions of H(1A), H(1B),
H(2A), and H(2B) could be located in a final Fourier-difference
synthesis and refined isotropically with fixed Ueq. The positions
of the other hydrogen atoms were calculated according to ideal
geometry using the riding method. Conventional R = 0.0405
[for 2888 reflections with I > 2σ(I)] and weighted wR2 = 0.1129
for all 3869 data reflections; reflection-to-parameter ratio 16.05,
residual electron density ϩ0.673/Ϫ0.968.
24 A. Wierzbicki, E. A. Salter, N. W. Hoffman, E. D. Stevens, L. V. Do,
M. S. VanLoock and J. D. Madura, J. Phys. Chem., 1996, 100,
11250.
25 R. R. Burch, R. L. Harlow and S. D. Ittel, Organometallics, 1987, 6,
CCDC reference number 186/1383.
graphic files in .cif format.
982.
26 C. Busetto, A. D’Alfonso, F. Maspero, G. Perego and A. Zazzetta,
J. Chem. Soc., Dalton Trans., 1977, 1828.
J. Chem. Soc., Dalton Trans., 1999, 1437–1444
1443