K. Born, S. Doye
FULL PAPER
Bytschkov, S. Doye, Eur. J. Org. Chem. 2003, 935–946; c) S.
Doye, Synlett 2004, 1653–1672; d) F. Alonso, I. Beletskaya, M.
Yus, Chem. Rev. 2004, 104, 3079–3160; e) A. Odom, Dalton
Trans. 2005, 225–233; f) R. Severin, S. Doye, Chem. Soc. Rev.
2007, 36, 1407–1420; g) T. E. Müller, K. C. Hultzsch, M. Yus,
F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795–3892; h) S.
Doye, in: Science of Synthesis, vol. 40a, Thieme, Stuttgart, Ger-
many, 2009, pp. 241–304.
a) P. J. Walsh, A. M. Baranger, R. G. Bergman, J. Am. Chem.
Soc. 1992, 114, 1708–1719; b) A. M. Baranger, P. J. Walsh,
R. G. Bergman, J. Am. Chem. Soc. 1993, 115, 2753–2763.
E. Haak, I. Bytschkov, S. Doye, Angew. Chem. 1999, 111, 3584–
3586; Angew. Chem. Int. Ed. 1999, 38, 3389–3391.
(m, 2 H), 2.98 (dd, J = 8.3, 13.4 Hz, 1 H), 3.04 (dd, J = 5.9,
13.4 Hz, 1 H), 3.94 (dd, J = 5.9, 8.2 Hz, 1 H), 7.20–7.45 (m, 10
H) ppm. 13C NMR (125 MHz, DEPT, CDCl3): δ = 13.7 (CH3),
22.3 (CH2), 26.5 (CH2), 29.6 (CH2), 31.4 (CH2), 45.1 (CH2), 47.4
(CH2), 64.6 (CH), 126.0 (CH), 126.6 (CH), 127.0 (CH), 127.9 (CH),
128.0 (CH), 128.9 (CH), 138.7 (C), 143.8 (C) ppm.
Amine 19:[15] The general procedure was used to synthesize 19 from
diphenylacetylene (14; 356 mg, 2.0 mmol) and benzylamine (15;
235 mg, 2.2 mmol). The hydroamination was performed at 160 °C
for 96 h with 5 mol-% [Zr(NMe2)4] and 10 mol-% tBuNHpTs (5).
After purification by flash chromatography (PE/EtOAc, 20:1),
product 19 (391 mg, 1.36 mmol, 68%) was obtained as a colorless
[2]
[3]
[4]
For selected examples of Ti-catalyzed hydroamination of al-
kynes, see: a) E. Haak, H. Siebeneicher, S. Doye, Org. Lett.
2000, 2, 1935–1937; b) J. S. Johnson, R. G. Bergman, J. Am.
Chem. Soc. 2001, 123, 2923–2924; c) Y. Shi, J. T. Ciszewski,
A. L. Odom, Organometallics 2001, 20, 3967–3969; d) C. Cao,
J. T. Ciszewski, A. L. Odom, Organometallics 2001, 20, 5011–
5013; e) L. Ackermann, R. G. Bergman, Org. Lett. 2002, 4,
1475–1478; f) C. Cao, Y. Shi, A. L. Odom, Org. Lett. 2002, 4,
2853–2856; g) A. Tillack, I. Garcia Castro, C. G. Hartung, M.
Beller, Angew. Chem. 2002, 114, 2646–2648; Angew. Chem. Int.
Ed. 2002, 41, 2541–2543; h) I. Bytschkov, S. Doye, Tetrahedron
Lett. 2002, 43, 3715–3718; i) V. Khedkar, A. Tillack, M. Beller,
Org. Lett. 2003, 5, 4767–4770; j) L. Ackermann, R. G.
Bergman, R. N. Loy, J. Am. Chem. Soc. 2003, 125, 11956–
11963; k) Z. Zhang, L. L. Schafer, Org. Lett. 2003, 5, 4733–
4736; l) V. Khedkar, A. Tillack, M. Michalik, M. Beller, Tetra-
hedron Lett. 2004, 45, 3123–3126; m) A. Tillack, H. Jiao, I.
Garcia Castro, C. G. Hartung, M. Beller, Chem. Eur. J. 2004,
10, 2409–2420; n) A. Tillack, V. Khedkar, M. Beller, Tetrahe-
dron Lett. 2004, 45, 8875–8878; o) A. Tillack, V. Khedkar, H.
Jiao, M. Beller, Eur. J. Org. Chem. 2005, 5001–5002; p) A.
Heutling, F. Pohlki, I. Bytschkov, S. Doye, Angew. Chem. 2005,
117, 3011–3013; Angew. Chem. Int. Ed. 2005, 44, 2951–2954;
q) D. Mujahidin, S. Doye, Eur. J. Org. Chem. 2005, 2689–2693;
r) K. Marcseková, B. Wegener, S. Doye, Eur. J. Org. Chem.
2005, 4843–4851; s) M. A. Esteruelas, A. M. López, A. C. Ma-
teo, E. Oñate, Organometallics 2005, 24, 5084–5094; t) M. A.
Esteruelas, A. M. López, A. C. Mateo, E. Oñate, Organometal-
lics 2006, 25, 1448–1460; u) D. L. Swartz II, A. L. Odom, Orga-
nometallics 2006, 25, 6125–6133; v) M. L. Buil, M. A. Es-
teruelas, A. M. López, A. C. Mateo, Organometallics 2006, 25,
4079–4089; w) A. V. Lee, L. L. Schafer, Synlett 2006, 2973–
2976; x) M. L. Buil, M. A. Esteruelas, A. M. López, A. C. Ma-
teo, E. Oñate, Organometallics 2007, 26, 554–565; y) Z. Zhang,
D. C. Leitch, M. Lu, B. O. Patrick, L. L. Schafer, Chem. Eur.
J. 2007, 13, 2012–2022; z) R. Severin, D. Mujahidin, J. Reimer,
S. Doye, Heterocycles 2007, 74, 683–700.
C. Elschenbroich, Organometallchemie, 4th ed., Teubner, Stutt-
gart, Leipzig, Wiesbaden, Germany, 2003, pp. 614–615.
F. Pohlki, S. Doye, Angew. Chem. 2001, 113, 2361–2364; Angew.
Chem. Int. Ed. 2001, 40, 2305–2308.
P. J. Walsh, F. J. Hollander, R. G. Bergman, J. Am. Chem. Soc.
1988, 110, 8729–8731.
E. Smolensky, M. Kapon, M. S. Eisen, Organometallics 2007,
26, 4510–4527.
J. A. Bexrud, J. D. Beard, D. C. Leitch, L. L. Schafer, Org. Lett.
2005, 7, 1959–1962.
For selected examples of the Ti-catalyzed intramolecular hy-
droamination of alkenes, see: a) C. Müller, C. Loos, N. Schu-
lenberg, S. Doye, Eur. J. Org. Chem. 2006, 2499–2503; b) J. A.
Bexrud, C. Li, L. L. Schafer, Organometallics 2007, 26, 6366–
6372; c) C. Müller, W. Saak, S. Doye, Eur. J. Org. Chem. 2008,
2731–2739; d) K. Marcseková, S. Doye, Synlett 2007, 2564–
2568; e) K. Gräbe, F. Pohlki, S. Doye, Eur. J. Org. Chem. 2008,
4815–4823; f) T. Janssen, R. Severin, M. Diekmann, M. Friede-
mann, D. Haase, W. Saak, S. Doye, R. Beckhaus, Organometal-
lics 2010, 29, 1806–1817.
1
oil. H NMR (500 MHz, CDCl3): δ = 1.82 (br. s, 1 H), 2.92–3.11
(m, 2 H), 3.55 (d, J = 13.6 Hz, 1 H), 3.75 (d, J = 13.6 Hz, 1 H),
3.98 (dd, J = 5.5, 8.5 Hz, 1 H), 7.15–7.22 (m, 4 H), 7.25–7.50 (m,
11 H) ppm. 13C NMR (125 MHz, DEPT, CDCl3): δ = 45.3 (CH2),
51.3 (CH2), 63.6 (CH), 126.3 (CH), 126.7 (CH), 127.1 (CH), 127.4
(CH), 127.9 (CH), 128.2 (CH), 128.3 (CH), 129.2 (CH), 138.8 (C),
140.4 (C), 143.7 (C) ppm.
Amine 24b:[15] The general procedure was used to synthesize 24b
from 1-octyne (23; 220 mg, 2.0 mmol) and p-toluidine (2; 235 mg,
2.2 mmol). The hydroamination was performed at 105 °C for 24 h
with 5 mol-% [Zr(NMe2)4]. The regioisomeric ratio 24a/24b was de-
termined to be 4:96. After purification by flash chromatography
(PE/EtOAc, 20:1), 24b (197 mg, 0.90 mmol, 45%) was obtained as
1
a yellow oil. H NMR (500 MHz, CDCl3): δ = 0.82 (t, J = 6.4 Hz,
3 H), 1.06 (d, J = 6.4 Hz, 3 H), 1.15–1.42 (m, 9 H), 1.44–1.52 (m,
1 H), 2.14 (s, 3 H), 3.29–3.33 (m, 2 H), 6.44 (d, J = 8.2 Hz, 2 H),
6.88 (d, J = 8.3 Hz, 2 H) ppm. 13C NMR (125 MHz, DEPT,
CDCl3): δ = 14.0 (CH3), 20.3 (CH3), 20.7 (CH3), 22.6 (CH2), 26.1
(CH2), 29.3 (CH2), 31.8 (CH2), 37.1 (CH2), 48.9 (CH), 113.4 (CH),
126.0 (C), 129.7 (CH), 145.2 (C) ppm.
Amines 26a and 26b:[15] The general procedure was used to synthe-
size a mixture of 26a and 26b from phenylacetylene (25; 204 mg,
2.0 mmol) and p-toluidine (2; 235 mg, 2.2 mmol). The hydroamin-
ation was performed at 105 °C for 24 h with 5 mol-% [Zr(NMe2)4]
and 10 mol-% tBuNHpTs (5). The regioisomeric ratio 26a/26b was
determined to be 75:25. After purification by flash chromatography
(PE/EtOAc, 20:1), a mixture of 26a and 26b (115 mg, 0.56 mmol,
28%) was obtained as a yellow oil. 1H NMR (500 MHz, CDCl3,
mixture of 26a and 26b): δ = 1.42 (d, J = 6.7 Hz, 3 H), 2.11 (s, 3
H), 2.16 (s, 3 H), 2.83 (t, J = 7.0 Hz, 2 H), 3.30 (t, J = 7.0 Hz, 3
H), 3.66 (br. s, 1 H), 4.37 (q, J = 6.7 Hz, 1 H), 6.35 (d, J = 8.2 Hz,
2 H), 6.47 (d, J = 8.2 Hz, 2 H), 6.82 (d, J = 8.2 Hz, 2 H), 6.92 (d,
J = 8.1 Hz, 2 H), 7.14–7.28 (m, 2ϫ 5 H) ppm. 13C NMR
(125 MHz, DEPT, CDCl3, mixture of a and b): δ = 20.3 (CH3),
20.4 (CH3), 25.0 (CH3), 35.5 (CH2), 45.4 (CH2), 53.6 (CH), 113.2
(CH), 113.4 (CH), 125.8 (CH), 126.4 (CH), 126.7 (C), 126.8 (CH),
128.6 (CH), 128.8 (CH), 129.6 (CH), 129.8 (CH), 139.4 (C), 145.0
(C), 145.4 (C), 145.7 (C) ppm.
[5]
[6]
[7]
[8]
[9]
[10]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details for the synthesis of sulfonamides and
characterization data.
Acknowledgments
We thank the Deutsche Forschungsgemeinschaft (DFG) for finan-
cial support of our research. We also thank Daniel Jaspers for the
preparation of sulfonamides 5, 6, and 7.
[1] For selected reviews on the hydroamination of alkynes, see: a)
F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104–114; b) I.
770
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 764–771