Y.-M. Han et al. / Bioorg. Med. Chem. Lett. 21 (2011) 747–751
751
mitochondria perturbation that require ROS accumulation. This
study thus provides a rationale for the development of curcumi-
noid as chemotherapeutic agent against human tumors.
0
0
3
6
12 24 48 time (hrs)
Cytosolic
Bax
Membrane
Acknowledgments
3
6
12 24 48 time (hrs)
This work was supported by the Korea Research Institute of Bio-
science and Biotechnology Research Initiative Program, the Na-
tional Chemical Genomics Research Program, and the Center for
Biological Modulators of the 21st Century Frontier Research
Program.
Cytosolic
Cyto-C
Membrane
Figure 5. The effect of HCC-7 on the localization of apoptosis regulatory proteins
Bax and cytochrome c (Cyto-c). SW620 cells treated with 10 M of HCC-7 for the
indicated time intervals and then the Bax and Cyto-c protein expression level were
investigated in the cytosolic and membrane fractions by Subcellular fractionation
followed by Western blot analyses.
l
References and notes
1. Szatrowski, T. P.; Nathan, C. F. Cancer Res. 1991, 51, 794.
2. Kawanishi, S.; Hiraku, Y.; Pinlaor, S.; Ma, N. Biol. Chem. 2006, 387, 365.
3. Zhou, Y.; Hileman, E. O.; Plunkett, W.; Keating, M. J.; Huang, P. Blood 2003, 101,
4098.
As shown in Figure 4, the antioxidants NAC and GSH signifi-
cantly inhibited HCC-7-induced apoptosis. It is well known that
ROS accumulation is critical for apoptosis induction through medi-
ation of mitochondrial perturbation. Therefore, we analyzed the
decrease of the mitochondrial membrane potential by the reduc-
tion in the ratio of A590 (red):A520 (green). We observed that
HCC-7 treatment caused a gradual decrease of membrane potential
after 6 h, and reached to 60% of the ratio after 12 h, indicating a sig-
nificant reduction in mitochondrial membrane potential (data not
shown). And also the release of mitochondrial cytochrome c to
cytosol, and in contrast, translocation of Bax from the cytosol to
the membrane is representative features during mitochondrial
apoptotic pathway.26 Therefore it was investigated whether cyto-
chrome c and/or Bax translocate between the membrane and cyto-
solic fractions upon treatment with HCC-7 using subcellular
4. Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Cancer Res. 2008,
68, 1777.
5. Oltra, A. M.; Carbonell, F.; Tormos, C.; Iradi, A.; Saez, G. T. Free Radical Biol. Med.
2001, 30, 1286.
6. Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Disc. 2009, 8, 579.
7. Kwon, B. M.; Cho, Y. K.; Lee, S. H.; Nam, J. Y.; Bok, S. H.; Chun, S. K.; Kim, J. A.;
Lee, I. R. Planta Med. 1996, 62, 183.
8. Kwon, B. M.; Lee, S. H.; Cho, Y. K.; Bok, S. H.; So, S. H.; Youn, M. R.; Chang, S. I.
Bioorg. Med. Chem. Lett. 1997, 7, 2473.
9. Lee, C. W.; Hong, D. H.; Han, S. B.; Park, S. H.; Kim, H. K.; Kwon, B. M.; Kim, H. M.
Planta Med. 1999, 65, 263.
10. Ka, H.; Park, H. J.; Jung, H. J.; Choi, J. W.; Cho, K. S.; Ha, J.; Lee, K. T. Cancer Lett.
2003, 196, 143.
11. Cabello, C. M.; Bair, W. B., III; Lamore, S. D.; Ley, S.; Bause, A. S.; Azimian, S.;
Wondrak, G. T. Free Radical Biol. Med. 2009, 46, 220.
12. Lee, K.; Kwon, B. M.; Kim, K.; Ryu, J.; Oh, S. J.; Lee, K. S.; Kwon, M. K.; Park, S. K.;
Kang, J. S.; Lee, C. W.; Kim, H. M. Xenobiotica 2009, 39, 255.
13. Han, D. C.; Lee, M. Y.; Shin, K. D.; Kim, J. M.; Son, K. H.; Kim, H. J.; Kim, H. M.;
Kwon, B. M. J. Biol. Chem. 2004, 279, 6911.
14. Kwon, B. M.; Lee, S. H.; Choi, S. U.; Park, S. H.; Lee, C. O.; Cho, Y. K.; Sung, N. D.;
Bok, S. K. Arch. Pharmacol. Res. 1998, 21, 147.
fractionation and Western blot analysis. When 10 lM of HCC-7
was treated in SW620 cells, the level of cytochrome c was mark-
edly increased in the cytosolic fraction. Bax, on the contrary to
cytochrome c, is remarkably increased at the membrane fraction
with the concurrent decrease at cytosolic fraction (Fig. 5).
Previous studies have shown that HCA and its analogs induced
cell cycle arrest at the G2/M phase.13,27 Therefore, we chose to
examine the mechanism of action of HCC-7 by cytofluorimetric
analysis, using propidium iodide to label DNA. After treatment of
15. Itokawa, H.; Shi, Q.; Akiyama, T.; Morris-Natschke, S. L.; Lee, K. H. Chin. Med.
2008, 3, 11.
16. Anand, P.; Thomas, S. G.; Kunnumakkara, A. B.; Sundaram, C.; Harikumar, K. B.;
Sung, B.; Tharakan, S. T.; Misra, K.; Priyadarsini, I. K.; Rajasekharan, K. N.;
Aggarwal, B. B. Biochem. Pharmacol. 2008, 76, 1590.
17. Hatchera, H.; Planalpb, R.; Chob, J.; Tortia, F. M.; Torti, S. V. Cell. Mol. Life Sci.
2008, 65, 1631.
18. Hail, N., Jr. Free Radical Biol. Med. 2008, 44, 1382.
19. Ravindran, J.; Subbaraju, G. V.; Raman, M. V.; Sung, B.; Aggarwal, B. B. Biochem.
Pharmacol. 2010, 79, 1658.
20. Payton, F.; Sandusky, P.; Alworth, W. L. J. Nat. Prod. 2007, 70, 143.
21. Amolins, M. W.; Peterson, L. B.; Blagg, B. S. Bioorg. Med. Chem. 2009, 17, 360.
22. Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S.
Bioorg. Med. Chem. 2009, 17, 2623.
SW620 and MCF-10A cells with HCC-7 (10 lM), the cells were har-
vested and analyzed with a FACScalibur flow cytometer. Treatment
of SW620 cells with HCC-7 for 15 h increases DNA content and
chromosome count to a tetraploid state, indicating cell cycle arrest
at the G2/M phase. However, when MCF-10A (an immortalized
23. Lin, L.; Shi, Q.; Nyarko, A. K.; Bastow, K. F.; Wu, C.-C.; Su, C.-Y.; Shih, C. C.-Y.;
Lee, K.-H. J. Med. Chem. 2006, 49, 3963.
24. Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg. Med.
Chem. 2008, 16, 4075. The spectroscopic characterization of compound 6 as a
sticky yellow oil; ESI MS m/z: 231.0985 (MꢁH)+ Calcd for C14H16O3: 232.1099;
1H NMR (CDCl3): d 8.05 (d, 1H, J = 16.2 Hz), 7.48 (m, 1H), 7.26 (m, 1H), 6.94 (m,
3H), 2.15 (s, 3H), 1.41 (s, 6H); 13C NMR (CDCl3): 208.99, 199.18, 156.35, 140.89,
132.13, 129.96, 121.44, 121.18, 120.66, 116.50, 61.88, 26.63, 21.13. The
spectroscopic characterization of compound 7 as a sticky yellow oil; ESI MS m/
z: 336.0732 (MꢁH)+ Calcd for C21H20O4: 336.1362; 1H NMR (CDCl3): d 8.00 (d,
2H, J = 16 Hz), 7.44 (d, 2H, J = 8.1 Hz), 7.20 (t, 2H, J = 7.2 Hz), 6.87 (m, 6H), 1.48
(s, 6H); 13C NMR (CDCl3): 198.27, 157.30, 138.68, 132.00, 129.27, 121.27,
120.76, 119.37, 116.16, 59.62, 20.89.
25. Weber, W. M.; Hunsaker, L. A.; Roybal, C. N.; Bobrovnikova-Marjon, E. V.;
Abcouwer, S. F.; Royer, R. E.; Deck, L. M.; Vander Jagt, D. L. Bioorg. Med. Chem.
2006, 14, 2450. The spectroscopic characterization of compound 13 as a sticky
yellow oil; ESI MS m/z: 216.0951 (M+H)+ Calcd for C14H16O2: 216.1150; 1H
NMR (CDCl3): d 7.71 (d, 1H, J = 15.3 Hz), 7.54 (m, 3H), 7.39 (m, 2H), 7.39 (m,
3H), 6.79 (d, 1H, J = 15.3 Hz), 2.13 (s, 3H), 1.40 (s, 6H); 13C NMR (CDCl3):
207.92, 197.77, 144.49, 134.15, 130.84, 128.93, 128.58, 120.61, 61.85, 26.51,
21.00. The spectroscopic characterization of compound 16 as a sticky red oil;
ESI MS m/z: 395.5201 (MꢁH)+ Calcd for C23H24O6: 396.4311; 1H NMR (CDCl3):
d 7.65 (d, 2H, J = 9.3), 7.09 (m, 2H), 6.98 (d, 2H, J = 1.14), 6.88 (d, 2H, J = 4.92),
6.62 (d, 2H, J = 9.3), 5.89 (s, 2H), 3.91 (s, 6H), 1.46 (s, 6H).
non-tumorigenic cell line) was treated with HCC-7 (10 lM), DNA
content at the G0/G1 phase was increased. It means that the com-
pound exhibits a different cell cycle effect in a non-tumorigenic
human cell line. It has been reported that immortalized human
umbilical vein endothelial (ECV304) cells undergo arrest at the
G0 phase by curcumin (a structural relative of HCC-7), and that cur-
cumin induced G2/M phase arrest in tumor cells.28 These results
suggest that HCC-7 selectively arrests the cell cycle at the G2/M
phase in tumor-derived cells and retains mother compound’s origi-
nal mechanism of action in tumor cells.
In summary, HCC-7 and compound 16 is a relatively strong gen-
erator of ROS generator in comparison to the other compounds and
has the strongest antitumor activity. These results suggest that ROS
production is an optional source of curcuminoid bioactivity, and
that the presence of a specific hydroxyl group critically enhances
the anti-proliferative effects of curcuminoids and the ability to
generate ROS. It is also found that the b-diketone moiety of
curcuminoids affected the stability and antitumor effects of the
compounds. And our results demonstrate that HCC-7-induced
apoptosis in human colorectal tumor cell is mediated by the
26. Hong, S. H.; Kim, J.; Kim, J. M.; Lee, S. Y.; Shin, D. S.; Son, K. H.; Han, D. C.; Sung,
Y. K.; Kwon, B. M. Biochem. Pharmacol. 2007, 74, 557.
27. Jeong, H. W.; Han, D. C.; Son, K. H.; Han, M. Y.; Lim, J. S.; Ha, J. H.; Lee, C. W.;
Kim, W. M.; Kwon, B. M. Biochem. Pharmacol. 2003, 65, 1343.
28. Sa, G.; Das, T. Cell Div. 2008, 3, 14.