2410
Organometallics 1999, 18, 2410-2412
Sign ifica n t Zir con iu m -Alk yl Gr ou p Effects on Ion P a ir
F or m a tion Th er m od yn a m ics a n d Str u ctu r a l
Reor ga n iza tion Dyn a m ics in Zir con ocen iu m Alk yls
Colin L. Beswick and Tobin J . Marks*
Department of Chemistry, Northwestern University, 2145 Sheridan Road,
Evanston, Illinois 60208-3113
Received April 20, 1999
Summary: Substantial Zr-alkyl group (R) effects on ion
pair thermodynamic stability as well as on ion pair
solution structure and structural dynamics are reported
in the [(1,2-Me2Cp)2ZrR]+[CH3B(C6F5)3]- series, where
R ) CH3, CH2C(CH3)3, CH2Si(CH3)3, and CH[Si(CH3)3]2.
These quantitative results underscore the effects such R
moieties are likely to play in group 4 metallocene-
mediated olefin polymerization catalysis.
nium ion pair thermodynamic stability with respect to
the neutral precursors, solution phase structure, and
stereochemical dynamics. We communicate here the
first thermochemical and dynamic NMR study which
indicates that R, R′ effects can be very large.3
Using the well-characterized and spectroscopically
informative bis(1,2-dimethylcyclopentadienyl)zirconocene
framework and B(C6F5)3 as a prototypical abstractor/
cocatalyst,2,4,5 a series of metallocenium alkyl meth-
ylborate ion pairs (2) was synthesized from the corre-
sponding methylalkyls (1)6 (eq 2) and characterized by
A growing database implicates metallocene ancillary
ligation (L, L′), metal identity (M), and the nature of
the abstractor/cocatalyst (A; eq 1) as key factors govern-
ing the thermodynamics and kinetics of single-site
metallocenium catalyst activation as well as the stereo-
chemical dynamics of the tight ion pairing.1,2 The
standard spectroscopic and analytical techniques.7 The
interplay of these variables influences catalyst activity,
thermodynamic stability, chain transfer characteristics,
and regio- and stereochemical aspects of monomer
enchainment in ways that are not yet entirely under-
stood. In actual polymerization catalytic systems, the
identity of alkyls R and R′ can be quite variable, and
little is known quantitatively about how alkyl group
steric and electronic characteristics affect metalloce-
(3) Communicated in part: Beswick, C. L.; Marks, T. J . Abstracts
of Papers; 216th National Meeting of the American Chemical Society,
Boston, MA, Aug 1998; American Chemical Society: Washington, DC,
1998; INOR 141.
(4) Yang, X.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc. 1994,
116, 10015-10031.
(5) (a) Sun, Y.; Spence, R. E. V. H.; Piers, W. E.; Parvez, M.; Yap,
G. P. A. J . Am. Chem. Soc. 1997, 119, 5132-5143. (b) Wang, Q.; Gillis,
D. J .; Quyoum, R.; J eremic, D.; Tudoret, M.-J .; Baird, M. C. J .
Organomet. Chem. 1997, 527, 7-14. (c) Bochmann, M.; Lancaster, S.
J .; Hursthouse, M. B.; Malik, K. M. A. Organometallics 1994, 13, 2235-
2243.
(1) For leading recent reviews of single-site olefin polymerization,
see: (a) J . Mol. Catal. 1998, 128, 1-337 (special issue on metallocene
and single site olefin catalysts; J ordan, R. F., Ed.). (b) Kaminsky, W.;
Arndt, M. Adv. Polym. Sci. 1997, 127, 144-187. (c) Bochmann, M. J .
Chem. Soc., Dalton Trans. 1996, 255-270. (d) Brintzinger, H. H.;
Fisher, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1143-1170. (e) Soga, K., Terano, M., Eds.
Catalyst Design for Tailor-Made Polyolefins; Elsevier: Tokyo, 1994.
(f) Mo¨hring, P. C.; Coville, N. J . J . Organomet. Chem. 1994, 479, 1-29.
(2) (a) Lanza, G.; Fragala`, I. L.; Marks, T. J . J . Am. Chem. Soc.
1998, 120, 8257-8258. (b) Chen, Y.-X.; Metz, M. V.; Li, L.; Stern, C.
L.; Marks, T. J . J . Am. Chem. Soc. 1998, 120, 6287-6305. (c) Deck,
P. A.; Beswick, C. L.; Marks, T. J . J . Am. Chem. Soc. 1998, 120,
1772-1784. (d) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J .
Am. Chem. Soc. 1998, 120, 4049-4050. (e) J ia, L.; Yang, X.; Stern, C.
L.; Marks, T. J . Organometallics 1997, 16, 842-857. (f) Michael, D.
B.; Coates, G. W.; Hauptman, F.; Waymouth, R. M.; Ziller, J . W. J .
Am. Chem. Soc. 1997, 119, 11174-11182. (g) Shiomura, T.; Asanuma,
T.; Inoue, N. Macromol. Rapid Commun. 1996, 17, 9-14. (h)
Herzog, T. A.; Zubris, D. L.; Bercaw, J . E. J . Am. Chem. Soc. 1996,
118, 11988-11989. (i) Eisch, J . J .; Pombrik, S. I.; Gurtzgen, S.;
Rieger, R.; Vzick, W. In ref 1e, pp 221-235. (j) Giardello, M. A.; Eisen,
M. S.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc. 1995, 117, 12114-
12129.
(6) Methylalkylzirconocenes were prepared via the addition of 1
equiv of the corresponding lithium alkyl to the dichlorozirconocene
followed by treatment with methyllithium or, alternatively, by addition
of the lithium alkyl to a mixed chloromethylzirconocene. See the
Supporting Information for details.
(7) For example, 2d was synthesized when 1d (0.21 g, 0.46 mmol)
and B(C6F5)3 (0.24 g, 0.48 mmol) were added to a vacuum reaction/
filtration flask. Toluene (25 mL) was vacuum-transferred in at -78
°C, and the resulting solution was warmed to 25 °C and stirred for 30
min. The mixture was then removed under reduced pressure, leaving
a viscous orange oil. Pentane (20 mL) was then vacuum-transferred
in, and after stirring, the oil solidified. The solution was filtered and
the solvent removed. The solid product was washed a second time with
pentane, after which bright yellow, analytically pure product (0.39 g,
0.41 mmol) was recovered. Yield: 92%. 1H NMR (CD2Cl2): δ 6.43 (t,
3.12 Hz, 1 H), 6.26 (d, 3.12 Hz, 2 H), 6.16 (d, 3.12 Hz, 2 H), 5.96 (t,
3.12 Hz, 1 H), 3.72 (s, 1 H), 2.15 (s, 6 H), 2.05 (s, 6 H), 0.40 (br,
1
3 H), 0.07 (s, 18 H). 13C NMR (CD2Cl2): ∆ 147.2 (d, J CF ) 241
1
1
Hz), 137.1 (d, J CF ) 244 Hz), 136.0 (d, J CF ) 249 Hz), 129.8 (CCH3),
127.1 (CCH3), 116.2 (CH), 114.0 (CH), 113.1 (CH), 110.3 (CH), 80.7
(ZrCH), 13.7 (CCH3), 13.4 (CCH3), 3.8 (SiCH3). Anal. Calcd for
C
40H40BF15Si2Zr: C, 49.83; H, 4.19. Found: C, 49.39; H, 4.19. See the
Supporting Information for other synthetic details.
10.1021/om990274z CCC: $18.00 © 1999 American Chemical Society
Publication on Web 05/29/1999