S. Hayashi et al. / European Journal of Medicinal Chemistry 50 (2012) 179e195
195
[18] T.D. Warner, F. Giuliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.R. Vane,
Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-
oxygenase-2 are associated with human gastrointestinal toxicity: a full in vi-
tro analysis, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 7563e7568.
[19] Z.A. Radi, N.K. Khan, Effects of cyclooxygenase inhibition on the gastrointes-
tinal tract, Exp. Toxicol. Pathol. 58 (2006) 163e173.
[20] L. Laine, GI risk and risk factors of NSAIDs, J. Cardiovasc. Pharmacol. 47 (Suppl.
1) (2006) S60eS66.
[21] Review: J.A. Mitchell, T.D. Warner, Cyclo-oxygenase-2: pharmacology, phys-
iology, biochemistry and relevance to NSAID therapy, Br. J. Pharmacol. 128
(1999) 1121e1132.
[47] F.H. Case, T.J. Kasper, The preparation of some substituted 2,6-bis-(2-pyridyl)-
pyridines, J. Am. Chem. Soc. 78 (1956) 5842e5844.
[48] F. Fontana, F. Minisci, M.C.N. Barbosa, E. Vismara, Homolytic acylation of
pyridines and pyrazines with
a-keto acids: the problem of monoacylation,
J. Org. Chem. 56 (1991) 2866e2869.
[49] G.W. Gribble, M.G. Saulnier, Regioselective ortho lithiation of halopyridines,
Tetrahedron Lett. 21 (1980) 4137e4140.
[50] D. Riendeau, M.D. Percival, S. Boyce, C. Brideau, S. Charleson, W. Cromlish,
D. Ethier, J. Evans, J.-P. Falgueyret, A.W. Ford-Hutchinson, R. Gordon, G. Greig,
M. Gresser, J. Guay, S. Kargman, S. Léger, J.A. Mancini, G. O’Neill, M. Ouellet,
I.W. Rodger, M. Thérien, Z. Wang, J.K. Webb, E. Wong, L. Xu, R.N. Young,
R. Zamboni, P. Prasit, C.-C. Chan, Biochemical and pharmacological profile of
a tetrasubstituted furanone as a highly selective COX-2 inhibitor, Br. J. Phar-
macol. 121 (1997) 105e117.
[22] M.L. Kowalski, J. Makowska, Use of nonsteroidal anti-inflammatory drugs in
patients with aspirin hypersensitivity. Safety of cyclo-oxygenase-2 inhibitors,
Treat. Respir. Med. 5 (2006) 399e406.
[23] W.B. White, G. Faich, J.S. Borer, R.W. Makuch, Cardiovascular thrombotic
events in arthritis trials of the cyclooxygenase-2 inhibitor celecoxib, Am. J.
Cardiol. 92 (2003) 411e418.
[24] B. Hinz, B. Renner, K. Brune, Drug insight: cyclo-oxygenase-2 inhibitorsda
critical appraisal, Nat. Clin. Pract. Rhum. 3 (2007) 552e560.
[25] A.A. Steiner, A.I. Ivanov, J. Serrats, H. Hosokawa, A.N. Phayre, J.R. Robbins,
J.L. Roberts, S. Kobayashi, K. Matsumura, P.E. Sawchenko, A.A. Romanovsky,
Cellular and molecular bases of the initiation of fever, PLoS Biol. 4 (2006)
1517e1524.
[51] P.F. Moore, D.L. Larson, I.G. Otterness, A. Weissman, S.B. Kadin, F.J. Sweeney,
J.D. Eskra, A. Nagahisa, M. Sakakibara, T.J. Carty, Tenidap, a structurally novel
drug for the treatment of arthritis: antiinflammatory and analgesic properties,
Inflamm. Res. 45 (1996) 54e61.
[52] C. Brideau, S. Kargman, S. Liu, A.L. Dallob, E.W. Ehrich, I.W. Rodger, C.-C. Chan,
A human whole blood assays for clinical evaluation of biochemical efficacy of
cyclooxygenase inhibitors, Inflamm. Res. 45 (1996) 68e74.
[53] J.M. Young, S. Panah, C. Satchawatcharaphong, P.S. Cheung, Human whole
blood assays for inhibition of prostaglandin G/H synthase-1 and -2 using
A23187 and lipopolysaccharide stimulation of thromboxane B2 production,
Inflamm. Res. 45 (1996) 246e253.
[26] Review: J.R. Vane, R.M. Botting, The mechanism of action of aspirin, Thromb.
Res. 110 (2003) 255e258.
[27] A.A. Khan, M. Iadarola, H.-Y.T. Yang, R.A. Dionne, Expression of COX-1 and
COX-2 in a clinical model of acute inflammation, J. Pain 8 (2007) 349e354.
[28] For example: K.K. Wu, Differential cyclooxygenase-2 transcriptional control in
proliferating versus quiescent fibroblasts, Prostaglandins Other Lipid Mediat.
83 (2007) 175e181.
[54] K. Glaser, M.-L. Sung, K. O’Neill, M. Belfast, D. Hartman, R. Carlson, A. Kreft,
D. Kubrak, C.-L. Hsiao, B. Weichman, Etodolac selectively inhibits human
prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1, Eur. J. Phar-
macol. 281 (1995) 107e111.
[55] W.L. Smith, R.M. Garavito, D.L. DeWitt, Prostaglandin endoperoxide H syn-
thase (cyclooxygenase)-1 and -2, J. Biol. Chem. 271 (1996) 33157e33160.
[56] M.G. Malkowski, S.L. Ginell, W.L. Smith, R.M. Garavito, The productive
conformation of arachidonic acid bound to prostaglandin synthase, Science
289 (2000) 1933e1937.
[57] C.A. Winter, E.A. Risley, G.V. Nuss, Carrageenin-induced edema in hind paw of
the rat as an assay for antiinflammatory drugs, Proc. Soc. Exp. Biol. Med 111
(1962) 544e547.
[58] J.G. Lombardino, I.G. Otterness, E.H. Wiseman, Acidic anti-inflammatory
agents-correlations of some physical, pharmacological and clinical data, Arz-
neim. Forsch. 25 (1975) 1629e1635.
[29] O. Dormond, A. Foletti, C. Paroz, C. Rüegg, NSAIDs inhibit
aVb3 integrin-
mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration
and angiogenesis, Nat. Med. 7 (2001) 1041e1047.
[30] Q.-T. Zhao, S.-Q. Yue, Z. Cui, Q. Wang, X. Cui, H.-H. Zhai, L.-H. Zhang, K.-F. Dou,
Potential involvement of the cyclooxygenase-2 pathway in hepatocellular
carcinoma-associated angiogenesis, Life Sci. 80 (2007) 484e492.
[31] C. Iwata, M.R. Kano, A. Komuro, M. Oka, K. Kiyono, E. Johansson, Y. Morishita,
M. Yashiro, K. Hirakawa, M. Kaminishi, K. Miyazono, Inhibition of
cyclooxygenase-2 suppresses lymph node metastasis via reduction of lym-
phangiogenesis, Cancer Res. 67 (2007) 10181e10189.
[32] M.A. Hull, O.O. Faluyi, C.W.S. Ko, S. Holwell, D.J. Scott, R.J. Cuthbert,
R. Poulsom, R. Goodlad, C. Bonifer, A.F. Markham, P.L. Coletta, Regulation of
stromal cell cycloocygenase-2 in the ApcMin/þ mouse model of intestinal
tumorigenesis, Carcinogenesis 27 (2006) 382e391.
[59] J. Gracia Leme, L. Hamamura, M.P. Leite, M. Rocha e Silva, Pharmacological
analysis of the acute inflammatory process induced in the rat’s paw by
local injection of carrageenin and by heating, Br. J. Pharmacol. 48 (1973)
88e96.
[33] J.-H. Chen, C.-W. Wu, H.-L. Kao, H.-M. Chang, A.F.-Y. Li, T.-Y. Liu, C.-W. Chi,
Effects of COX-2 inhibitor on growth of human gastric cancer cells and its
relation to hepatocyte growth factor, Cancer Lett. 239 (2006) 263e270.
[34] B.S. Reddy, C.V. Rao, Novel approaches for colon cancer prevention by
cyclooxygenase-2 inhibitors, J. Environ. Pathol. Toxicol. Oncol. 21 (2002) 155e164.
[35] K. Krysan, K.L. Reckamp, S. Sharma, S.M. Dubinett, The potential and rationale
for COX-2 inhibitors in lung cancer, Anti-Cancer Agents Med. Chem. 6 (2006)
209e220.
[36] R. Chenevard, D. Hürlimann, M. Béchir, F. Enseleit, L. Spieker, M. Hermann,
W. Riesen, S. Gay, R.E. Gay, M. Neidhart, B. Michel, T.F. Lüscher, G. Noll,
F. Ruschitzka, Selective COX-2 inhibition improves endothelial function in
coronary artery disease, Circulation J. Am. Heart Assoc. 107 (2003) 405e409.
[37] K. Höcherl, F. Dreher, A. Kurtz, M. Bucher, Cyclooxygenase-2 inhibition
attenuates lipopolysaccharide-induced cardiovascular failure, Hypertension J.
Am. Heart Assoc. 40 (2002) 947e953.
[60] F. Nantel, D. Denis, R. Gordon, A. Northey, M. Cirino, K.M. Metters, C.C. Chan,
Distribution and regulation of cyclooxygenase-2 in carrageenan-induced
inflammation, Br. J. Pharmacol. 128 (1999) 853e859.
[61] S. Cuzzocrea, L. Sautebin, G. De Sarro, G. Costantino, L. Rombolá, E. Mazzon,
A. Ialenti, A. De Sarro, G. Ciliberto, M. Di Rosa, A.P. Caputi, C. Thiemermann,
Role of IL-6 in the pleurisy and lung injury caused by carrageenan, J. Immunol.
163 (1999) 5094e5104.
[62] M. Romano, R. Faggioni, M. Sironi, S. Sacco, B. Echtenacher, E. Di Santo,
M. Salmona, P. Ghezzi, Carrageenan-induced acute inflammation in the mouse
air pouch synovial model. Role of tumour necrosis factor, Mediat. Inflamm. 6
(1997) 32e38.
[63] S.S.V. Padi, N.K. Jain, S. Singh, S.K. Kulkarni, Pharmacological profile of para-
coxib: a novel, potent injectable selective cyclooxygenase-2 inhibitor, Eur. J.
Pharmacol. 491 (2004) 69e76.
[64] I. Posadas, M. Bucci, F. Roviezzo, A. Rossi, L. Parente, L. Sautebin, G. Cirino,
Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent
and displays differential nitric oxide cyclooxygenase-2 expression, Br. J.
Pharmacol. 142 (2004) 331e338.
[38] P.S. Staats, Pain management and beyond: evolving concepts and treatments
involving cyclooxygenase inhibition, J. Pain Symptom Manage. 24 (1S) (2002)
S4eS9.
[39] W.L. Xie, J.G. Chipman, D.L. Robertson, R.L. Erikson, D.L. Simmons, Expression
of a mitogen-responsive gene encoding prostaglandin synthase is regulated
by mRNA splicing, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 2692e2696.
[40] B.A. Patel, C.B. Ziegler, N.A. Cortese, J.E. Plevyak, T.C. Zebovitz, M. Terpko,
R.F. Heck, Palladium-catalyzed vinylic substitution reactions with carboxylic
acid derivatives, J. Org. Chem. 42 (1977) 3903e3907.
[41] J.P. Knowles, A. Whiting, The HeckeMizoroki cross-coupling reaction:
a mechanistic perspective, Org. Biomol. Chem. 5 (2007) 31e44.
[42] A. Agrawal, P.G. Tratnyek, Reduction of nitro aromatic compounds by zero-
valent iron metal, Environ. Sci. Technol. 30 (1996) 153e160.
[65] R.F. Claudino, C.A.L. Kassuya, J. Ferreira, J.B. Calixto, Pharmacological and
molecular characterization of the mechanisms involved in prostaglandin
E2-induced mouse paw edema, J. Pharmacol. Exp. Ther. 318 (2006)
611e618.
[66] S. Hayashi, E. Nakata, A. Morita, K. Mizuno, K. Yamamura, A. Kato, K. Ohashi,
Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimi-
dazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel
non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the
treatment of neuropathic pain: design, synthesis, and structureeactivity
relationships, Bioorg. Med. Chem. 18 (2010) 7675e7699.
[43] T.-L. Ho, D.-G. Jou, Synthesis of cryptolepine and cryptoteckiene from
a common intermediate, Helv. Chim. Acta 85 (2002) 3823e3827.
[67] (a) S. Hayashi, A. Hirao, A. Imai, H. Nakamura, Y. Murata, K. Ohashi, E. Nakata,
Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-
methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole:
design, synthesis, and structureeactivity relationship of oral receptor occu-
pancy in the brain for orally potent antianxiety drug, J. Med. Chem. 52 (2009)
610e625;
[44] A.C. Cain, E.R. Holler, Extended scope of in situ iodotrimethylsilane mediated
selective reduction of benzylic alcohols, Chem. Commun. 13 (2001) 1168e1169.
[45] R.W. Carling, P.D. Leeson, K.W. Moore, J.D. Smith, C.R. Moyes, I.M. Mawer,
S. Thomas, T. Chan, R. Baker, A.C. Foster, S. Grimwood, J.A. Kemp,
G.R. Marshall, M.D. Tricklebank, K.L. Saywell, 3-Nitro-3,4-dihydro-2(1H)-qui-
nolones. Excitatory amino acid antagonists acting at glycine-site NMDA and
(b) S. Hayashi, A. Hirao, H. Nakamura, K. Yamamura, K. Mizuno, H. Yamashita,
Discovery of 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-
1H-benzimidazole: integrated drug-design and structureeactivity relation-
ships for orally potent, metabolically stable, and potential-risk reduced novel
non-peptide nociceptin/orphanin FQ receptor agonist as antianxiety drug,
Chem. Biol. Drug Des. 74 (2009) 369e381.
(RS)-
J. Med. Chem. 36 (1993) 3397e3408.
a
-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid
receptors,
[46] R.T. Shuman, P.L. Ornstein, J.W. Paschal, P.D. Gesellchen, An improved
synthesis of homoproline and derivatives, J. Org. Chem. 55 (1990) 738e741.