NITROSATION OF DIALKYLHYDROXYLAMINES
resolution in the transformed spectra of 0.15 Hz per point.
Temperature calibration was done using the 1H spectra of
samples of neat MeOH and 1,2-ethanediol. The number of
transients recorded depended upon the amount of line broad-
ening at the different temperatures and was adjusted to give a
satisfactory signal-to-noise ratio in each case. Any exponential
window applied to the FID prior to transformation was adjusted
to ensure the resulting additional line broadening was insignif-
icant in each case. 13C spectra were measured at 125.77 MHz, and
the EXSY and HSQC experiments used standard pulse sequences.
[21] T. B. D. Morgan, G. Stedman, M. N. Hughes, J. Chem. Soc. (B) 1968, 344.
[22] M. N. Hughes, G. Stedman, J. Chem. Soc. (B) 1963, 2824.
[23] D. L. H. Williams, Nitrosation Reactions and the Chemistry of Nitric
Oxide, Elsevier, Amsterdam, 2004.
[24] H. Maskill, I. D. Menneer, D. I. Smith, J. Chem. Soc., Chem. Commun.
1995, 1855.
[25] J. Haider, M. N. S. Hill, I. D. Menneer, H. Maskill, J. G. Smith, J. Chem.
Soc., Chem. Commun. 1997, 1571.
[26] J. I. Bhat, W. Clegg, M. R. J. Elsegood, H. Maskill, I. D. Menneer, P. C.
Miatt, J. Chem. Soc., Perkin Trans. 2 2000, 1435.
[27] H. Maskill, The physical basis of organic chemistry, Oxford University
Press, Oxford, 1985.
[28] G. J. Karabatsos, R. A. Taller, J. Amer. Chem. Soc. 1964, 86, 4373.
[29] T. Axenrod, P. S. Pregosin, G. W. A. Milne, J. Chem. Soc., Chem.
Commun. 1968, 702.
Acknowledgements
[30] T. Axenrod, M. J. Wieder, G. W. A. Milne, Tetrahedron 1969, 10, 401.
[31] J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure
Methods, (2nd edn). Gaussian Inc., Pittsburgh, PA, USA, 1996.
[32] Gaussian 03, Revision B.05. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.
E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P.
Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
[33] P. H. M. Budzelaar, Program gNMR. Cherwell Scientific Publishing,
Oxford, 1995.
The authors thank the Centro de Supercomputacion de Galicia
(CESGA) for computing facilities, and the EPSRC (UK) for partial
funding of NMR facilities at Newcastle.
REFERENCES
¨
[1] R. Behrend, E. Konig, Justus Liebigs Annalen de Chemie. 1891, 263, 218.
[2] R. Behrend, R. Lindner, Justus Liebigs Annalen de Chemie. 1893, 275,
136.
[3] V. Meyer, Justus Liebigs Annalen de Chemie. 1875, 175, 141.
[4] W. Wislicenus, Berichte der Deutschen Chemischen Gesellschaft. 1893,
26, 772.
[5] J. E. Leffler, Chem. Rev. 1950, 45, 385.
[6] J. E. Leffler, A. A. Bothner-By, J. Am. Chem. Soc. 1951, 73, 5473.
[7] A. Bothner-By, L. Friedman, J. Chem. Phys. 1952, 20, 459.
[8] A. B. Boese, Jr., L. W. Jones, R. T. Major, J. Am. Chem. Soc. 1931, 53,
3530.
[9] M. Hutchinson, G. Stedman, J. C. S. Perkin 2 1973, 93.
[10] T. A. Meyer, D. L. H. Williams, J. C. S. Perkin 2 1981, 361.
[11] D. D. Perrin, Dissociation Constants of Inorganic Acids and Bases in
Aqueous Solution, Butterworths, London, 1969. also published in Pure
Appl. Chem., 1969, 20 133.
[12] C. A. Bunton, G. Stedman, J. Chem. Soc. 1959, 3466.
[13] G. Y. Markovits, S. E. Schwartz, L. Newman, Inorg. Chem. 1981, 20, 445
[14] L. P. Hammett, Physical Organic Chemistry, McGraw-Hill Inc., New York,
1940. p. 294
[34] D. A. McQuarrie, Statistical Mechanics. Harper and Row, New York, 1976.
[35] E. Riordan, N. Minogue, D. Healy, P. O’Driscoll, J. R. Sodeau, J. Phys.
Chem. (A) 2005, 109, 779–786.
[36] C. Anastasio, L. Chu, Env. Sci. Technol. 2009, 43, 1108.
[37] J. Crugeiras, unpublished results.
[38] This value for PhNH2OMeþ is derived from the estimate of pKa1 ¼ 4.5
based upon literature values for analogues,[21] including NH3OHþ
(6.0)[11] and MeNH2OMeþ (4.75)[40] in water.
[39] M. Canle, LW. Clegg, I. Demirtas, M. R. J. Elsegood, J. Haider, H. Maskill,
P. C. Miatt, J. Chem. Soc., Perkin Trans. 2 2001, 1742 (for the effect of
acetonitrile as cosolvent).
¨
[15] C. Doring, H. Gehlen, Z. Anorg. Allg. Chem. 1961. 312, 32.
[40] T. C. Bissot, R. W. Parry, D. H. Campbell, J. Am. Chem. Soc. 1957, 79, 796.
[41] We thank Drs T. W. Bentley and R. A. McClelland for helpful discus-
sions on this issue.
[16] E. D. Hughes, C. K. Ingold, J. H. Ridd, J. Chem. Soc. 1958, 77.
[17] E. D. Hughes, C. K. Ingold, J. H. Ridd, J. Chem. Soc. 1958, 88.
[18] J. H. Ridd, Quarterly Reviews, 1961, 15, 418.
[42] D. R. Lide (Ed.). CRC Handbook of Chemistry and Physics, (89th edn).
CRC Press/Taylor and Francis, Boca Raton, FL, 2009.
[19] G. C. M. Bourke, G. Stedman, J. Chem. Soc., Perkin Trans. 2 1992, 161.
[20] M. N. Hughes, T. B. D. Morgan, G. Stedman, Chem. Commun. 1966, 241.
J. Phys. Org. Chem. 2011, 24 162–171
Copyright ß 2010 John Wiley & Sons, Ltd.
View this article online at wileyonlinelibrary.com