S. Reymond et al. / Tetrahedron: Asymmetry 11 (2000) 1273±1278
1277
A sample of the crude derivatizing reagent anti-2 was subjected to fractional distillation under
reduced pressure for analysis: bp 148ꢀC/5Â10^3 mbar; ꢁ2D0=^350.7 (c=1.13, CH2Cl2); 31P NMR
ꢀ 117.9; 1H NMR ꢀ 1.55±1.90 (m, 3H), 1.93±2.12 (m, 1H), 2.63 (s, 3H), 2.67 (s, 3H), 3.05±3.30 (m,
2H), 3.42±3.60 (m, 1H), 3.79 (t, J=7.0 Hz, 1H), 4.10±4.22 (m, 1H), 6.75±6.95 (m, 3H), 7.25 (t,
J=7.2 Hz, 2H); 13C NMR ꢀ 25.4 (d, J=4.1 Hz), 32.3, 36.7, 37.0, 50.4 (d, J=40.6 Hz), 54.4 (d,
J=4.7 Hz), 62.3 (d, J=7.3 Hz), 114.4 (d, J=11.6 Hz), 117.5, 128.9, 146.5 (d, J=14.4 Hz).
References
1. For example: (a) Martens, J. In Topics in Current Chemistry; Springer-Verlag: Berlin, 1984; Vol. 125, p. 165. (b)
Seebach, D.; Inwinkelried, R.; Weber, T. In Enantiomerically Pure Compound Syntheses with C-Bond Formation
via Acetals and Enamines, Modern Synthetic Methods; Springer-Verlag: Berlin, 1986; pp. 125±129. (c) Decker, M.
Handbook of Chiral Chemicals; Ager, D. J., Ed.; Marcel Dekker: New York, 1999.
2. (a) Schurig, V. J. Chromatogr. A 1994, 666, 111. (b) Chromatographic Separations Based on Molecular Recognition;
Jinno, K., Ed.; Wiley-VCH: New York, 1997.
3. For a review of NMR methods, see: Parker, D. Chem. Rev. 1991, 91, 1441.
4. Verkade, J. G.; Quin, L. D. In Phosphorus 31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds
and Metal Complexes; VCH publishers, Inc.: Deer®eld Beach, Florida, 1987; Vol. 8.
5. Hulst, R.; Kellog, R. M.; Feringa, B. L. Rec. Trav. Chim. Pays-Bas 1995, 114, 115.
6. (a) Anderson, R. C.; Shapiro, M. J. J. Org. Chem. 1984, 49, 1304. (b) Kato, N. J. Am. Chem. Soc. 1990, 112, 254.
(c) Johnson, C. R.; Elliot, R. C.; Penning, T. D. J. Am. Chem. Soc. 1984, 106, 5019. (d) Feringa, B. L.; Smaardijk,
A.; Wynberg, H. J. Am. Chem. Soc. 1985, 107, 4798. (e) Feringa, B. L.; Strijtveen, B.; Kellog, R. M. J. Org. Chem.
1989, 51, 5484. (f) Alexakis, A.; Mutti, S.; Normant, J. F.; Mangeney, P. Tetrahedron: Asymmetry 1990, 1, 437. (g)
Alexakis, A.; Mutti, S.; Mangeney, P. J. Org. Chem. 1992, 57, 1224. (h) Brunel, J. M.; Pardigon, O.; Maei, M.;
Buono, G. Tetrahedron: Asymmetry 1992, 3, 1243. (i) Brunel, J. M.; Faure, B. Tetrahedron: Asymmetry 1995, 6,
2353. (j) Garner, C. M.; McWhorter, C.; Goerke, A. R. Tetrahedron Lett. 1997, 38, 7717. (k) Oshikawa, T.;
Kumagai, S.; Kobayashi, J.; Yamashita, M.; Seo, K. J. Chem. Soc., Chem. Commun. 1995, 435. (l) Hulst, R.;
Zijlstra, R. W. J.; Feringa, B. L.; de Vries, N. K.; Hoeve, W. T.; Wynberg, H. Tetrahedron Lett. 1993, 34, 1339.
(m) de Parrodi, C. A.; Moreno, G. E.; Quintero, L.; Juaristi, E. Tetrahedron: Asymmetry 1998, 9, 2093.
7. The notations of the syn and anti diastereomers are according to the methylene substituent of the pyrrolidine ring
with respect to the dimethylamino group. If they are on the same side of the ®ve-membered phosphorus-containing
ring, we call it a syn diastereomer; otherwise, it is an anti diastereomer. syn (unlike)=(2S,5S)-2-dimethylamino-3-
phenyl-1,3-diazaphosphabicyclo[3.3.01,5]octane and anti (like)=(2R,5S)-2-dimethylamino-3-phenyl-1,3-diaza-
phosphabicyclo[3.3.01,5]octane. (a) Cros, P.; Buono, G.;Peier, G.; Denis, D.; Mortreux, A.; Petit, F. New J.
Chem. 1987, 11, 573. (b) Brunel, J. M.; Chiodi, O.; Faure, B.; Fotiadu, F.; Buono, G. J. Organomet. Chem. 1997,
529, 285.
8. X-Ray structure analysis of 3: a plate white monocrystal of C13H23B1N3P, obtained by recrystallization in ethyl
acetate, with approximate dimensions 0.2Â0.2Â0.2 mm was mounted on a glass capillary. All the measurements
were made on a Rigaku diractometer with Mo-Ka radiation. Cell constants and the orientation matrix for data
collection were obtained from a least square re®nement using setting angles of 30 re¯ections in the range y=1±25ꢀ,
which corresponded to a monoclinic cell with dimensions: a=7.9186(2), b=9.6315(3), c=19.5340(7) A. For Z=5
and M=263.13, rmeas=1.25 g cm^3. The space group was determined to be P212121 from the systemic absences.
A total of 1503 re¯ections were collected at T=298 K. The standards were measured after every 158 re¯ections.
Selected bond distances (A): P1±N3, 1.648(1); P1±N4, 1.691(1); P1±N20, 1.632(1); P1±B19, 1.912(1); N3±C7,
1.479(2); N3±C13, 1.471(2); N4±C6, 1.418(2). Selected bond angles (ꢀ): N3±P1±N4, 92.5(1); N3±P1±N20,
109.4(1); N4±P1±N20, 108.1(1); P1±N3±C7, 114.7(1); P1±N3±C13, 125.5(1); C7±N3±C13, 111.6(1); P1±N4±C12,
111.9(1); P1±N4±C6, 123.9(1); C6±N4±C12, 119.8(1); P1±N20±C22, 124.5(1); P1±N20±C21, 121.2(1). CCDC
139376.
9. It is noteworthy that when the reaction time is not long enough, traces of syn-4a and syn-4b diastereomers can be
characterized. In this case, integration of the signals can still be correlated to the enantiomeric purity of the con-
sidered halohydrin.