5
[2H, s, pyrrole b-H], 9.87 [2H, s, meso-H], 10.21 [2H, s, meso-H];
lmax(CHCl3)/nm 392, 502, 539, 561; nmax/cm21 1216(SNO); m/z (FAB)
485.20074 (M+ + 1). For 7: dH(300 MHz, C6D6, dashed (A) numbering for
chlorin ring) 21.62 [2H, br s, NAH], 22.76 [2H, s, NH], 0.82 [3H, t,
C(7A)CH2CH3], 1.67 [3H, t, C(18A)CH2CH3], 1.76 [3H, t, C(13)CH2CH3],
1.95 [3H, t, C(2)CH2CH3], 2.93 [3H, s, C(8A)CH3], 3.28 [3H, s, C(17A)CH3],
3.34 [3H, s, C(12)CH3], 3.48 [3H, s, C(3)CH3], 2.83 [2H, m,
C(7A)CH2CH3], 3.05 [1H, m, C(22A)CH2], 3.34 [1H, m, C(22A)CH2], 3.84
[4H, m, C(18A, 13)CH2CH3], 4.11 [2H, m, C(2)CH2CH3], 4.68 [2H, m,
C(21)CH2CH2], 5.18 [1H, d, J 21, C(23) CH2], 5.56 [1H, d, J 21, C(23)
CH2], 6.16 [1H, s, C(3A)NCH2], 6.95 [1H, s, C(3A)NCH2], 9.21 [1H, d,
C(7)H], 9.23 [1H, d, C(12A)H], 9.45 [1H, d, C(8)H], 9.46 [1H, d, C(13A)H],
9.50. 9.75, 9.80, 9.87, 10.20, 10.27, 10.38, 10.48 [1H each, s, meso-HAs]; m/z
(FAB) 841.47036 (M++1). For 8: dH(CDCl3) 24.01 [2H, br s, NH], 1.86
[6H, t, CH2CH3], 3.68 [6H, s, CH3], 4.08 [6H, s, OCH3], 4.12 [4H, q,
CH2CH3], 5.10 [4H, s, CH2], 9.36 [2H, s, pyrrole b-H], 9.93 [2H, s, meso-
H], 10.17 [2H, s, meso-H]; m/z (EI) 562.25886 (M+). For 9: dH(CDCl3)
23.95 [2H, br s, NH], 1.88 [6H, t, CH2CH3], 3.68 [6H, s, CH3], 4.15 [6H,
m, CH2CH3, CH], 4.30, 4.36 [2H, m, CH2], 4.84 [2H, d, CH2A], 6.86 [2H,
m, Ar–H], 7.10 [3H, m, Ar–H], 9.38 [2H, s, pyrrole b-H], 10.11 [2H, s,
meso-H], 10.19 [2H, s, meso-H]; m/z (EI) 593.27971 (M+). For 10:
dH(CDCl3) 23.90 [2H, br s, NH], 1.84 [6H, t, CH2CH3], 1.86 [1H, d, J 10,
CH2], 2.35 [1H, d, J 10, CH2], 2.57 2H, m, CH], 3.13 [2H, s, CH], 3.45 [2H,
dd, CH2], 3.64 [6H, s, CH3], 4.12 [4H, q, CH2CH3], 4.69 [2H, dd, CH2],
6.38 [2H, s, NCH], 9.40 [2H, s, pyrrole b-H], 10.09 [2H, s, meso-H], 10.18
[2H, s, meso-H].
CO2Me
CO2Me
N
ii
N
H
8
N
N
H
N
iii
O
N
N
Ph
6
O
iv
9
i
N
H
N
N
N
H
N
N
10
HN
NH
N
1 See, for example Comprehensive Supramolecular Chemistry, ed. J. L.
Atwood, J. E. D. Davies, D. D. MacNicol and F. Vogtle, Elsevier,
Oxford, 1996, vol. 2, 4, 5, 6, 9, 10.
7
Scheme 2 Reagents and conditions: i, D, toluene, 80–110 °C, 2 h; ii,
MeO2CC·CCO2Me, D, toluene, 110 °C, 4.5 h; iii, N-phenylmaleimide, D,
85 °C, 3 h; iv, norbornadiene, D, 80 °C, 2 h.
2 M. J. Crossley, L. G. King, I. A. Newsom and C. S. Sheehan, J. Chem.
Soc., Perkin Trans. 1, 1996, 2675; M. J. Crossley and J. K. Prashar,
Tetrahedron Lett., 1997, 38, 6751; M. J. Crossley, L. J. Govenlock and
J. K. Prashar, J. Chem. Soc., Chem. Commun., 1995, 2379; M. J.
Crossley, P. L. Burn, S. J. Langford and J. K. Prashar, J. Chem. Soc.,
Chem. Commun., 1995, 1921; E. J. Atkinson, A. M. Oliver and M. N.
Paddon-Row, Tetrahedron Lett., 1993, 34, 6147; P. T. Gulyas, S. J.
Langford, N. L. Lokan, M. G. Ranasinghe and M. N. Paddon-Row,
J. Org. Chem., 1997, 62, 3038; K. A. Jolliffe, T. D. M. Bell, K. P.
Ghiggino, S. J. Langford and M. N. Paddon-Row, Angew. Chem., Int.
Ed., 1998, 37, 916.
3 M. A. F. Faustino, M. G. P. M. S. Neves, M. G. H. Vicente, A. M. S.
Silva and J. A. S. Cavaleiro, Tetrahedron Lett., 1996, 37, 3569; S. Kai
and M. Suzuki, Tetrahedron Lett., 1996, 37, 5931; G. Zheng, A. N.
Kozyrev, T. J. Dougherty, K. M. Smith and R. K. Pandey, Chem. Lett.,
1996, 1119.
resonances for each of the substituents on the porphyrin and
chlorin rings.† For example, there are four distinct ethyl and
methyl resonances, two AB quartets for the b-pyrrole protons,
eight singlets for the meso-protons, and two NH singlets at high
field. The exocyclic methylene is defined by two singlets (d
6.16 and 6.95) significantly deshielded by the neighbouring
porphyrin while the deshielded single bridging methylene is a
clear AB quartet at d 5.18 and 5.56. The remaining ethylene of
the spiro-linked cyclohexene bridge is a series of complex
multiplets at d 3.05, 3.34 and 4.68. The UV-visible spectrum of
7 is a composite of both porphyrin and chlorin-type rings and
not surprisingly shows little evidence of electronic communica-
tion between the linked macrocycles.
4 P. A. Liddell, L. J. Demanche, S. Li, A. N. Macpherson, R. A. Nieman,
A. L. Moore, T. A. Moore and D. Gust, Tetrahedron Lett., 1994, 35,
995.
On heating 5 in toluene at 80–110 °C in the presence of
various dienophiles shown in Scheme 2, the corresponding
Diels–Alder adducts were isolated in good yields (65–95%).†
5 A. C. Tomé, P. S. S. Lacerda, M. G. P. M. S. Neves and J. A. S.
Cavaleiro, Chem. Commun., 1997, 1199.
6 S. Ito, T. Murashima and N. Ono, J. Chem. Soc., Perkin Trans. 1, 1997,
3161; S. Ito, T. Murashima, H. Uno and N. Ono, Chem. Commun., 1998,
1661; M. G. H. Vicente, A. C. Tomé, A. Walter and J. A. S. Cavaleiro,
Tetrahedron Lett., 1997, 38, 3639.
7 S. Knapp, J. Vasudevan, T. J. Emge, B. H. Arison, J. A. Potenza and
H. J. Schugar, Angew. Chem., Int. Ed., 1998, 37, 2368.
8 R. N. Warrener, A. C. Schultz, M. R. Johnston and M. J. Gunter, J. Org.
Chem., 1999, in press; R. N. Warrener, M. R. Johnston and M. J. Gunter,
Synlett, 1998, 593; R. N. Warrener, M. R. Johnston, A. C. Schultz, M.
Golic, M. A. Houghton, M. J. Gunter and R. A. Russell, Synlett, 1998,
590.
9 J. L. Charlton and M. M. Alauddin, Tetrahedron (Tetrahedron Report
No. 220), 1987, 43, 2873; T.-S. Chou, Rev. Heteroatom Chem., 1993, 8,
65.
10 H.-C. Chen and T.-S. Chou, Tetrahedron, 1998, 54, 12609.
11 K. Ando, M. Kankake, T. Suzuki and H. Takayama, Synlett, 1994,
741.
12 M. G. H. Vicente, M. T. Cancilla, C. B. Lebrilla and K. M. Smith, Chem.
Commun., 1998, 2355.
13 D. Barton and S. Zard, J. Chem. Soc., Chem. Commun., 1985, 1098; D.
Barton, J. Kertvagoret and S. Zard, Tetrahedron, 1990, 46, 7587; D. P.
Arnold, L. Burgess-Dean, J. Hubbard and M. A. Rahman, Aust. J.
Chem., 1994, 47, 969.
The C2 symmetry of each is clear from the 1H NMR spectra. In
v
the case of 10, only a single stereoisomer was isolated, and both
a lack of vicinal H, H-coupling and no significant shielding of
the ethylenic protons indicates it to be the exo-product
(molecular modelling indicates a close proximity of the
ethylenic protons to the shielding region of the porphyrin in the
endo-isomer, although the environments of the bridge methy-
lenes are little different in either isomer). Each of these suggests
considerable potential as building blocks for higher level
structures. For example 8 can be utilised in further cycloaddi-
tion reactions using its activated double bond, 9 via a variety of
associated N-substituted derivatives can provide a single
attachment point on a meso-unsubstituted porphyrin, and the
formation of 10 indicates the possibility for more elaborate
architectures. Although these few reactions demonstrate the
utility of 5, its potential is clearly much more extensive and can
now be explored.
This research was supported by the Australian Research
Council.
14 P. Hopkins and P. Fuchs, J. Org. Chem., 1978, 43, 1208; S.-S. Chou and
C. M. Sun, Tetrahedron Lett., 1990, 31, 1035.
15 T. D. Lash, Chem. Eur. J., 1996, 2, 1197.
Notes and references
† Selected data for 5: dH(CDCl3) 24.0 [2H, br s, NH], 1.84 [6H, t,
CH2CH3], 3.70 [6H, s, CH3], 4.12 [4H, q, CH2CH3], 5.67 [4H, s, CH2], 9.38
Communication 9/01446B
804
Chem. Commun., 1999, 803–804