IR Spectra of cis- and trans-Peroxynitrite Anion
J. Am. Chem. Soc., Vol. 123, No. 40, 2001 9849
Experimental and Theoretical Methods
Despite numerous kinetic experiments with reactions involv-
ing peroxynitrite anion in aqueous solution,21 spectral identifica-
tion of these conformers is not well established. In aqueous
solution, a broad absorption at 302 nm is ascribed to OONO-.22,23
When solid nitrates are irradiated at 254 nm, OONO- is
reportedly produced,24 but no information was deduced about
conformation. The Raman spectrum of OONO- in aqueous
alkaline solutions reveals bands at 375, 642, 791, 931, 999, and
1564 cm-1, which are assigned to cis-OONO- based on the
15N isotopic substitution and CCSD calculation.10 In an impor-
tant spectroscopic study, 193-nm irradiation of potassium nitrate
(KNO3) molecules isolated in solid argon at 13 K produced both
cis- and trans-potassium peroxynitrite species (K+)(OONO-).25
The cis-KOONO isomer absorbs at 1444.5, 952.3, 831.6, and
749.1 cm-1, whereas trans-KOONO absorbs at 1528.4, 987.4,
and 602.2 cm-1. Similar conformers have also been reported
for the lithium and sodium counterparts, with as much as 52-
cm-1 difference in their infrared absorptions.25
The laser ablation, matrix isolation methods and apparatus have been
described in detail previously,45-47 For the current experiment, separate
spray-on lines were used to minimize the reaction of NO and O2 and
formation of unwanted NO2. Such a co-condensation at 7 K gave only
a small amount of extra NO2. The Nd:YAG laser fundamental (1064
nm, 10-Hz repetition rate with 10-ns pulse width) was focused onto
rotating metal targets (Al, Fe, In, Li, Ni, Pd, Ru, Tl, Th, Y). Typically,
low laser energy (3-5 mJ/pulse) was used, which favored the
stabilization of ionic species. Laser-ablated metal atoms, cations, and
electrons were codeposited with O2 (0.2%-1%) and NO (0.5%) in
excess argon onto a 7 K CsI window for 1-2 h at 3-4 mmol/h. Nitric
oxide (Matheson) and 15NO (MSD Isotopes, 99% 15N) samples were
prepared after fractional distillation from a coldfinger. Oxygen (Mathe-
son), 18O2 (Yeda), and 16O2/16O18O/18O2 (Yeda) were used as received.
Infrared spectra were recorded at 0.5-cm-1 resolution on a Nicolet 550
spectrometer with 0.1-cm-1 accuracy using a mercury-cadmium-
telluride (MCTB) detector down to 400 cm-1. Matrix samples were
annealed to allow diffusion and selected samples subjected to irradiation
by filtered light from a medium-pressure mercury lamp (Philips, 175
W, λ > 240 nm) with the globe removed or a tungsten lamp (Wiko,
360 W operated at 25% power, visible, near-IR).
In addition to the extensive biological and chemical impor-
tance of OONO-, there is considerable interest in gas-phase
ion-molecule reactions involving NO- and O2
extensive investigations of O4 and (NO)2 have been
performed,29-35 we have found no evidence for the gaseous
OONO- ion-molecule complex.
.
- 26-35 Although
Density functional theory calculations were performed for both cis-
and trans-peroxynitrite anions using the Gaussian 98 program48 and
the hybrid B3LYP functional.49 The 6-311+G(d) basis set was used
for both nitrogen and oxygen atoms.50 Geometries were fully optimized
and the vibrational frequencies computed by using analytical second
derivatives. The transition-state optimization employed synchronous
transit-guided quasi-Newton methods.51,52
-
-
Laser ablation of metal targets is known to produce electrons
and cations.36-41 This technique coupled with matrix isolation
has been used to produce and characterize small anions in this
laboratory, notably O4- and (NO)2- 36,37,42-44 Here we present
.
Results and Discussion
a spectroscopic characterization of the isolated cis- and trans-
peroxynitrite anions, which are prepared in the straightforward
reaction of NO and O2 in excess argon.
Systematic matrix infrared spectroscopic investigations of
laser-ablated metal reactions with O2/Ar and NO/Ar mixtures
and DFT calculations of potential new products will be
described.
-
(20) Worle, M.; Latal, P.; Kissner, R.; Nesper, R.; Koppenol, W. H.
Chem. Res. Toxicol. 1999, 12, 305.
(21) For example: (a) Pape´e, H. M.; Petriconi, G. L. Nature 1964, 204,
142. (b) Hughes, M. N.; Nicklin, H. G. J. Chem. Soc. A 1968, 450. (c)
Goldstein, S.; Meyerstein, D.; van Eldik, R.; Czapski, G. J. Phys. Chem. A
2000, 104, 9712.
Th + O2/Ar and Th + NO/Ar Experiments. Experiments
with thorium and O2 were performed to develop a background
since a high yield of O4- was observed in recent laser ablation
investigations.36,53 The reaction product infrared absorptions
(22) Shuali, U.; Ottolenghi, M.; Rabani, J.; Yelin, Z. J. Phys. Chem.
1969, 73, 3445.
included ThO at 876.4 cm-1, ThO2 at 787.2 and 735.1 cm-1
,
(23) Barat, F.; Gilles, L.; Hickel, B.; Sutton, J. J. Chem. Soc. A 1970,
1982. Benton, D. J.; Moore, P. J. Chem. Soc. A 1970, 3179.
(24) Plumb, R. C.; Edward, J. O. J. Phys. Chem. 1992, 96, 3245.
(25) Lo, W. J.; Lee, Y. P.; Tsai, J. H. M.; Tsai, H. H.; Hamilton, T. P.;
Harrison, J. G.; Beckman, J. S. J. Chem. Phys. 1995, 103, 4026.
(26) Fehsenfeld, F. C.; Ferguson, E. E.; Schmeltekopf, A. L. J. Chem.
Phys. 1966, 45, 1844.
(27) McFarland, M.; Dunkin, D. B.; Fehsenfeld, F. C.; Schmeltekopf,
A. L.; Ferguson, E. E. J. Chem. Phys. 1972, 56, 2358.
(28) Rinden, E.; Maricq, M. M.; Grabowski, J. J. J. Am. Chem. Soc.
1989, 111, 1203.
(29) Coe, J. V.; Snodgrass, J. T.; Freidhoff, C. B.; McHugh, K. M.;
Bowen, K. H. J. Chem. Phys. 1987, 87, 4302.
(30) Posey, L. A.; Johnson, M. A. J. Chem. Phys. 1988, 88, 5383.
(31) Arnold, D. W.; Newmark, D. M. J. Chem. Phys. 1995, 102, 7035.
(32) De Luca, M. J.; Han, C. C.; Johnson, M. A. J. Chem. Phys. 1990,
93, 268.
(33) Sherwood, C. R.; Hanold, K. A.; Garner, M. C.; Strong, K. M.;
Continetti, R. E. J. Chem. Phys. 1996, 105, 10803.
(34) Hanold, K. A.; Continetti, R. E. Chem. Phys. 1998, 239, 493.
(35) Luony, A. K.; Clements, T. G.; Resat, M. S.; Continetti, R. E. J.
Chem. Phys. 2001, 114, 3449.
(36) Chertihin, G. V.; Andrews, L. J. Chem. Phys. 1998, 108, 6404 and
references therein.
and metal-independent bands also present in other metal-
oxygen experiments, namely, O3 at 1039.5 cm-1, O4- at 953.8
cm-1, and O3- at 803.9 cm-1 36,54-56 A new band at 653.2 cm-1
.
shifted to 619.6 cm-1 with 18O2 and gave an oxygen 16/18
isotopic ratio of 1.0543. This isotopic ratio is lower than the
(45) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
(46) Hassanzadeh, P.; Andrews, L. J. Phys. Chem. 1992, 96, 9177.
(47) Zhou, M. F.; Andrews, L. J. Am. Chem. Soc. 1998, 120, 13230.
(48) Gaussian 98, ReVision A.1. Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, J. A.;
Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam,
J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;
Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.;
Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowki, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M.
W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian,
Inc., Pittsburgh, PA, 1998.
(37) Andrews, L.; Zhou, M. F.; Willson, S. P.; Kushto, G. P.; Snis, A.;
Panas, I. J. Chem. Phys. 1998, 109, 177 and references therein.
(38) Liang, B.; Zhou, M. F.; Andrews, L. J. Phys. Chem. A 2000, 104,
3905.
(39) Zhou, M. F.; Andrews, L. J. Phys. Chem. A 2000, 104, 3914.
(40) Zhou, M. F.; Andrews, L. J Chem. Phys. 1999, 110, 2414.
(41) Andrews, L.; Liang, B. J. Am. Chem. Soc. 2001, 123, 1997.
(42) Andrews, L.; Zhou, M. F. J. Chem. Phys. 1999, 111, 6036.
(43) Thompson, W. E.; Jacox, M. E. J. Chem. Phys. 1989, 91, 3826.
(44) Zhou, M. F.; Hacaloglu, J.; Andrews, L. J. Chem. Phys. 1999, 110,
9450.
(49) Lee, C.; Yang, E.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(50) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033. Hay, P. J. J. Chem.
Phys. 1977, 66, 4377. K. Raghavachari, K.; Trucks, G. W. J. Chem. Phys.
1989, 91, 1062.
(51) Peng, C.; Schlegel, H. B. Isr. J. Chem. 1994, 33, 449.
(52) Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput.
Chem. 1996, 17, 49.
(53) Liang, B.; Andrews, L., to be published.
(54) Gabelnick, S. D.; Reedy, G. T.; Chasanov, M. G. J. Chem. Phys.
1974, 60, 1167.