Br
PhI=O–Me3SiN3
N3
i
ii
MeCN, –40 to –25 °C
S
6
1
+
S
Rn
Rn
HO
S
NH3
R = OMe, OAc
(42–70%)
–
CF3CO2
3•CF3CO2H salt
Scheme 4
Scheme 6 Reagents and conditions: i, H2, 10% Pd-C, EtOH–TFA; ii, 2,
MeOH, room temp.
drobenzothiophenes has never been reported, probably due to
readily occurring side reactions such as aromatization, sulfoxide
formation, benzylic oxidation and a-oxidation of the sulfur
atom under oxidative conditions. We examined the known
stepwise methods to obtain a-azidodihydrobenzothiophene.
However, the aromatization occurred exclusively to give
benzothiophene derivatives in the initial halogenation step.
Very recently, we developed a novel and direct a-azidation of
dihydrobenzothiophenes using a combination of PhINO and
Me3SiN3 (Scheme 4).11 However, the azidation of 4 gave only
a trace amount of the expected a-azido compound. This is
because there appears to be a large number of reactive sites on
phenol ether 4 toward the hypervalent iodine-induced azidation.
Hence, we then performed the azidation after debenzylation
followed by acetylation of 4 to give the corresponding a-azido
compound 5 in 46% yield. After hydrolytic deprotection of the
6-acetoxy group, 2-azido-5-bromo-6-hydroxy-dihydrobenzo-
thiophene 6 was finally obtained. The route to 6 from
commercially available methyl (4-hydroxyphenyl)acetate is
outlined in Scheme 5.
to give the TFA salt of 1, whose spectral data were identical to
those previously reported1 (Scheme 6).
In conclusion, the first total synthesis of (±)–makaluvamine F
has been achieved via a facile construction of the labile N,S-
acetal skeleton by a combination of hypervalent iodine
oxidation reactions. Synthetic studies towards more compli-
cated sulfur-containing discorhabdins and their analogs are now
underway.
Notes and references
1 D. C. Radisky, E. S. Radisky, L. R. Barrows, B. R. Copp, R. A. Kramer
and C. M. Ireland, J. Am. Chem. Soc., 1993, 115, 1632.
2 L. R. Barrows, D. C. Radisky, B. R. Copp, D. S. Swaffar, R. A. Kramer,
R. L. Warters and C. M. Ireland, Anti-Cancer Drug Des., 1993, 8,
333.
3 J.-F. Cheng, Y. Ohizumi, M. R. Wälchli, H. Nakamura, Y. Hirata, T.
Sasaki and J. Kobayashi, J. Org. Chem., 1988, 53, 4621; H. H. Sun, S.
Sakemi, N. Burres and P. McCarthy, J. Org. Chem., 1990, 55, 4964;
J. W. Blunt, M. H. G. Munro, C. N. Battershill, B. R. Copp, J. D.
McCombs, N. B. Perry, M. R. Prinsep and A. M. Thompson, New J.
Chem., 1990, 14, 761; J. Kobayashi, J.-F. Cheng, S. Yamamura and M.
Ishibashi, Tetrahedron Lett., 1991, 32, 1227 and references cited
therein; T. F. Molinski, Chem. Rev., 1993, 93, 1825; B. R. Copp, K. F.
Fulton, N. B. Perry, J. W. Blunt and M. H. G. Munro, J. Org. Chem.,
1994, 59, 8233; A. Yang, B. J. Baker, J. Grimwade, A. Leonard and J. B.
McClintock, J. Nat. Prod., 1995, 58, 1596.
4 Y. Kita, T. Yakura, H. Tohma, K. Kikuchi and Y. Tamura, Tetrahedron
Lett., 1989, 30, 1119; H. J. Knölker and K. Hartmann, Synlett, 1991,
428; S. Hamabuchi, H. Hamada and M. Somei, Heterocycles, 1991, 32,
443; S. Nishiyama, J.-F. Cheng, X. L. Tao and S. Yamamura,
Tetrahedron Lett., 1991, 32, 4151; T. Izawa, S. Nishiyama and S.
Yamamura, Tetrahedron, 1994, 50, 13593; J. D. White, K. M. Yager
and T. Yakura, J. Am. Chem. Soc., 1994, 116, 1831; E. V. Sadanandan,
S. K. Pillai, M. V. Lakshmikantham, A. D. Billimoria, J. S. Culpepper
and M. P. Cava, J. Org. Chem., 1995, 60, 1800; D. Roberts, M. Alvarez
and J. A. Joule, Tetrahedron Lett., 1996, 37, 1509; R. Zhao and J. W.
Lown, Synth. Commun., 1997, 27, 2103; D. Roberts, J. A. Joule, M. A.
Bros and M. Alvarez, J. Org. Chem., 1997, 62, 568; M. Makosza, J.
Stalewski and O. S. Maslennikova, Synthesis, 1997, 1131; M. Iwao, O.
Motoi, T. Fukuda and F. Ishibashi, Tetrahedron, 1998, 54, 8999; G. A.
Kraus and N. Selvakumar, Synlett, 1998, 845.
5 Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka and T. Yakura, J. Am.
Chem. Soc., 1992, 114, 2175.
6 Y. Kita, M. Egi, A. Okajima, M. Ohtsubo, T. Takada and H. Tohma,
Chem. Commun., 1996, 1491; Y. Kita, H. Watanabe, M. Egi, T. Saiki,
Y. Fukuoka and H. Tohma, J. Chem. Soc., Perkin Trans. 1, 1998,
635.
7 Y. Kita, M. Egi, M. Ohtsubo, T. Saiki, T. Takada and H. Tohma, Chem.
Commun., 1996, 2225.
8 H. Böhme and D. Morf, Chem. Ber., 1957, 90, 446.
9 H. Böhme and F. Ziegler, Liebigs Ann. Chem., 1974, 734; I. W. J. Still,
W. L. Brown, R. J. Colville and G. W. Kutney, Can. J. Chem., 1984, 62,
586.
10 B. M. Trost, M. Vaultier and M. L. Santiago, J. Am. Chem. Soc., 1980,
102, 7929.
Br
CO2Me
iv,v
i–iii
(64 %)
(71%)
BnO
HO
HO
Br
Br
viii,ix
vi–vii
(34%)
(66 %)
BnO
S
BnO
S
4
Bn
Br
Br
x
(46%)
AcO
S
RO
S
N3
5 R = Ac
6 R = H
xi
(90%)
Scheme 5 Reagents and conditions: i, Br2, AcOH; ii, BnBr, K2CO3, EtOH;
iii, LiAlH4, THF; iv, I2, PPh3, imidazole, PhMe; v, AcSBn, NaOH, MeOH;
vi, PIFA–BF3·OEt2; vii, aq. MeNH2; viii, BF3·OEt2, EtSH; ix, Ac2O,
NaOAc, aq. NaOH; x, PhINO–Me3SiN3, MeCN, 240 to 225 °C; xi, 5%
NaOH, MeOH.
Sequential attempts to transform the azido group to the amino
group by catalytic hydrogenation or other reductive methods
under non-acidic conditions proved unsatisfactory (i.e.
2-amino-5-bromo-6-hydroxydihydrobenzothiophene
3
was
found to be quite labile under basic conditions). Furthermore,
Wittig-type reactions between the phosphine imine prepared
from 6 and several quinones were also unsuccessful. Finally, we
found that the catalytic hydrogenation of 6 using 10% Pd-C in
the presence of 4 equiv. of TFA resulted in complete reduction
to give 3 as a TFA salt in quantitative yield without any side
reactions. The final coupling reaction in MeOH between both
synthetic precursors, 3 (TFA salt) and 2, proceeded in 86% yield
11 H. Tohma, M. Egi, M. Ohtsubo, H. Watanabe, S. Takizawa and Y. Kita,
Chem. Commun., 1998, 173.
Communication 8/08715F
144
Chem. Commun., 1999, 143–144