10.1002/anie.201901336
Angewandte Chemie International Edition
COMMUNICATION
[6] K. Handschick, K. Beuerlein, L. Jurida, M. Bartkuhn, H. Muller,
J. Soelch, A. Weber, O. Dittrich-Breiholz, H. Schneider, M.
Scharfe, M. Jarek, J. Stellzig, M. L. Schmitz, M. Kracht,
Molecular cell 2014, 53, 193-208.
cell lines that exhibit a range of sensitivity to CDK4/6 inhibition.
Interestingly, BSJ-02-162, which degrades CDK4/6 and IKZF1/3,
had increased anti-proliferative effects in many MCL cell lines in
comparison to BSJ-03-204, which only degrades CDK4/6
(Figure 6C), suggesting that co-targeting these two distinct
pathways may be a promising strategy for the treatment of MCL.
In sum, we developed a series of CDK4/6 degraders that
largely recapitulated the cellular effects of CDK4/6 inhibition,
including reduction in pRB levels, G1 arrest, and anti-
proliferative activity. As these effects required the presence of
CRBN, they were dependent on target degradation rather than
inhibition. Similarly, Zhao and Burgess recently reported that
conjugation of pomalidomide to either palbociclib or ribociclib
resulted in degraders that could induce dual degradation of
[7] J. Deng, E. S. Wang, R. W. Jenkins, S. Li, R. Dries, K. Yates, S.
Chhabra, W. Huang, H. Liu, A. R. Aref, E. Ivanova, C. P.
Paweletz, M. Bowden, C. W. Zhou, G. S. Herter-Sprie, J. A.
Sorrentino, J. E. Bisi, P. H. Lizotte, A. A. Merlino, M. M. Quinn,
L. E. Bufe, A. Yang, Y. Zhang, H. Zhang, P. Gao, T. Chen, M. E.
Cavanaugh, A. J. Rode, E. Haines, P. J. Roberts, J. C. Strum,
W. G. Richards, J. H. Lorch, S. Parangi, V. Gunda, G. M.
Boland, R. Bueno, S. Palakurthi, G. J. Freeman, J. Ritz, W. N.
Haining, N. E. Sharpless, H. Arthanari, G. I. Shapiro, D. A.
Barbie, N. S. Gray, K. K. Wong, Cancer Discov 2018, 8, 216-
233.
CDK4/6 and reduce levels of phosphorylated Rb[18]
.
[8] M. Toure, C. M. Crews, Angew Chem Int Ed Engl 2016, 55,
We also discovered that simultaneously degrading CDK4/6
and IKZF1/3 demonstrated enhanced anti-proliferation effect in
MCL cell lines in comparison to palbociclib, lenalidomide, or a
selective CDK4/6 degrader, similar to what was observed with a
1966-1973.
[9] C. M. Olson, B. Jiang, M. A. Erb, Y. Liang, Z. M. Doctor, Z.
Zhang, T. Zhang, N. Kwiatkowski, M. Boukhali, J. L. Green, W.
Haas, T. Nomanbhoy, E. S. Fischer, R. A. Young, J. E. Bradner,
G. E. Winter, N. S. Gray, Nat Chem Biol 2018, 14, 163-170.
[10] R. P. Nowak, S. L. DeAngelo, D. Buckley, Z. He, K. A. Donovan,
J. An, N. Safaee, M. P. Jedrychowski, C. M. Ponthier, M.
Ishoey, T. Zhang, J. D. Mancias, N. S. Gray, J. E. Bradner, E. S.
Fischer, Nat Chem Biol 2018, 14, 706-714.
previously reported BTK degrader that also targeted IKZF1/3[13c]
.
Thus, compounds that target multiple vulnerabilities may be a
promising therapeutic strategy, particularly for B-cell
malignancies that are sensitive to IKZF1/3 degradation.
The highly homologous ATP-binding pockets of CDK4 and
CDK6 has hindered the development of selective CDK4 or
CDK6 probes. Here, by varying the linkers for CDK4/6-targeted
degraders, we identified molecules capable of acutely and
selectively degrading either CDK4 or CDK6. Structural analysis
of kinase-degrader-CRBN ternary complexes will be required to
reveal the basis for the observed selectivity. These compounds
may serve as selective probes for pharmacological dissection of
the distinct CDK4 or CDK6 biological functions and as starting
points for the development of therapeutic degrader molecules.
[11] aS. An, L. Fu, EBioMedicine 2018, 36, 553-562; bP. M. Cromm,
C. M. Crews, Cell Chem Biol 2017, 24, 1181-1190.
[12] L. M. Gelbert, S. Cai, X. Lin, C. Sanchez-Martinez, M. Del
Prado, M. J. Lallena, R. Torres, R. T. Ajamie, G. N. Wishart, R.
S. Flack, B. L. Neubauer, J. Young, E. M. Chan, P. Iversen, D.
Cronier, E. Kreklau, A. de Dios, Invest New Drugs 2014, 32,
825-837.
[13] aG. Lu, R. E. Middleton, H. Sun, M. Naniong, C. J. Ott, C. S.
Mitsiades, K. K. Wong, J. E. Bradner, W. G. Kaelin, Jr., Science
2014, 343, 305-309; bJ. Kronke, N. D. Udeshi, A. Narla, P.
Grauman, S. N. Hurst, M. McConkey, T. Svinkina, D. Heckl, E.
Comer, X. Li, C. Ciarlo, E. Hartman, N. Munshi, M. Schenone,
S. L. Schreiber, S. A. Carr, B. L. Ebert, Science 2014, 343,
301-305; cD. Dobrovolsky, E. S. Wang, S. Morrow, C. Leahy, T.
Faust, R. P. Nowak, K. A. Donovan, G. Yang, Z. Li, E. S.
Fischer, S. P. Treon, D. M. Weinstock, N. S. Gray, Blood 2018;
dH. T. Huang, D. Dobrovolsky, J. Paulk, G. Yang, E. L.
Weisberg, Z. M. Doctor, D. L. Buckley, J. H. Cho, E. Ko, J.
Jang, K. Shi, H. G. Choi, J. D. Griffin, Y. Li, S. P. Treon, E. S.
Fischer, J. E. Bradner, L. Tan, N. S. Gray, Cell Chem Biol 2018,
25, 88-99 e86.
Acknowledgements
The authors gratefully acknowledge the generous financial
support of the following sources: Damon Runyon Cancer
Research Fellowship DRG-2270-16 (E.S.W.). This work was
funded by NIH grant R01CA218278 (E.S.F). Eric S. Fischer is a
Damon Runyon-Rachleff Innovator supported in part by the
Damon Runyon Cancer Research Foundation (DRR-50-18).
Conflicts of Interest
N.S.G. is a founder, science advisory board member (SAB) and
equity holder in Gatekeeper, Syros, Petra, C4, B2S and Soltego.
The Gray lab receives or has received research funding from
Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi,
Her2llc, Deerfield and Sanofi. E.S.F is a founder and/or member
of the scientific advisory board, and equity holder of C4
Therapeutics and Civetta Therapeutics and is a consultant to
Novartis, AbbVie and Deerfield. The Fischer lab receives or has
received research funding from Novartis, Deerfield and Astellas.
B.J., E.S.W., Y.L., T.H.Z., and N.S.G are inventors on patents
covering CDK4/6 degraders owned by Dana-Farber.
[14] M. Brand, B. Jiang, S. Bauer, K. A. Donovan, Y. Liang, E. S.
Wang, R. P. Nowak, J. C. Yuan, T. Zhang, N. Kwiatkowski, A.
C. Muller, E. S. Fischer, N. S. Gray, G. E. Winter, Cell Chem
Biol 2018.
[15] K. A. Donovan, J. An, R. P. Nowak, J. C. Yuan, E. C. Fink, B. C.
Berry, B. L. Ebert, E. S. Fischer, Elife 2018, 7.
[16] aJ. An, C. M. Ponthier, R. Sack, J. Seebacher, M. B. Stadler, K.
A. Donovan, E. S. Fischer, Nat Commun 2017, 8, 15398; bQ. L.
Sievers, G. Petzold, R. D. Bunker, A. Renneville, M. Slabicki, B.
J. Liddicoat, W. Abdulrahman, T. Mikkelsen, B. L. Ebert, N. H.
Thoma, Science 2018, 362.
[17] P. Jares, D. Colomer, E. Campo, Nat Rev Cancer 2007, 7, 750-
762.
Keywords: drug design • cancer • cell cycle • CDK4/6 • protein
degradation
[18] B. Zhao, K. Burgess, Chem Commun (Camb) 2019.
[1] B. O'Leary, R. S. Finn, N. C. Turner, Nat Rev Clin Oncol 2016,
13, 417-430.
[2] B. Laderian, T. Fojo, Semin Oncol 2017, 44, 395-403.
[3] C. J. Sherr, D. Beach, G. I. Shapiro, Cancer Discov 2016, 6,
353-367.
[4] M. Puyol, A. Martin, P. Dubus, F. Mulero, P. Pizcueta, G. Khan,
C. Guerra, D. Santamaria, M. Barbacid, Cancer Cell 2010, 18,
63-73.
[5] K. Kollmann, G. Heller, C. Schneckenleithner, W. Warsch, R.
Scheicher, R. G. Ott, M. Schafer, S. Fajmann, M. Schlederer, A.
I. Schiefer, U. Reichart, M. Mayerhofer, C. Hoeller, S.
Zochbauer-Muller, D. Kerjaschki, C. Bock, L. Kenner, G.
Hoefler, M. Freissmuth, A. R. Green, R. Moriggl, M. Busslinger,
M. Malumbres, V. Sexl, Cancer Cell 2013, 24, 167-181.
This article is protected by copyright. All rights reserved.