10.1002/anie.202007825
Angewandte Chemie International Edition
RESEARCH ARTICLE
scope and good functional group compatibility. The survey of
more iminyl radical-triggerred cascade 1,5-HAT/(5+n) annulation
reactions with the oximes as the five-atom units to access N-
heterocycles is ongoing in our group.
Acknowledgements
Financial support from the NSFC (No. 21772231), the National
Key R&D program of China (No. 2018YFA0507900), China
Postdoctoral Science Foundation (No. 2018M633761) and the
Army Medical University is greatly appreciated.
Keywords: oximes • N-heterocycles • cascade reaction • iron
catalysis • synthetic methods
[1]
a) D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103,
893; b) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5854; c) T. Y. Zhang, Adv. Heterocycl. Chem. 2017, 121, 1.
[2]
[3]
Comprehensive Heterocyclic Chemistry III (Ed.: A. R. Katritzky, C. A.
Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, Amsterdam, 2008.
Radicals in Organic Synthesis (Ed.: P. Renaud, M. P. Sibi), Wiley-VCH,
Weinheim, 2001.
[4]
[5]
For recent review, see: H.-M. Huang, M. H. Garduño-Castro, C. Morrill,
D. J. Procter, Chem. Soc. Rev. 2019, 48, 4626.
For recent examples involving C-C bond cleavage followed by radical
annulation for the construction of alicyclic compounds, see: a); A. G.
Amador, E. M. Sherbrook, T. P. Yoon, J. Am. Chem. Soc. 2016, 138,
4722; b) W. Hao, J. H. Harenberg, X. Xu, S. N. MacMillan, S. Lin, J. Am.
Chem. Soc. 2018, 140, 3514; c) X. Huang, J. Lin, T. Shen, K. Harms, M.
Marchini, P. Ceroni, E. Meggers, Angew. Chem. Int. Ed. 2018, 57,
5454; Angew. Chem. 2018, 130, 5552.
Scheme 7. Energy profile of annulation reactions with relative Gibbs free
energies [kcal/mol].
[6]
[7]
a) J.-J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang, Z. Zuo, Angew. Chem. Int.
Ed. 2016, 55, 15319; Angew. Chem. 2016, 128, 15545; b) A. Hu, Y.
Chen, J.-J. Guo, N. Yu, Q. An, Z. Zuo, J. Am. Chem. Soc. 2018, 140,
13580.
For recent reviews, see: a) J. Robertson, J. Phillaia, R. K. Lush, Chem. Soc.
Rev. 2001, 30, 94; b) Ž. Čeković, Tetrahedron 2003, 59, 8073; c) S. Chiba,
H. Chen, Org. Biomol. Chem. 2014, 12, 4051; d) M. Yan, J. C. Lo, J. T.
Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692; e) L. Capaldo, D.
Ravelli, Eur. J. Org. Chem. 2017, 2056; f) X.-Q. Hu, J.-R. Chen, W.-J. Xiao,
Angew. Chem. Int. Ed. 2017, 56, 1960; Angew. Chem. 2017, 129,
1988; g) X. Wu, C. Zhu, Chem. Commun. 2019, 55, 9747.
For recent examples, see: a) A.-F. Voica, A. Mendoza, W. R. Gutekunst,
J. O. Fraga, P. S. Baran, Nat. Chem. 2012, 4, 629; b) Y.-F. Wang, H.
Chen, X. Zhu, S. Chiba, J. Am. Chem. Soc. 2012, 134, 11980; c) P. Yu, J.-S.
Lin, L. Li, S.-C. Zheng, Y.-P. Xiong, L.-J. Zhao, B. Tan, X.-Y. Liu, Angew.
Chem. Int. Ed. 2014, 53, 11890; Angew. Chem. 2014, 126, 12084; d) G.
J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268;
e) J. C. K. Chu, T. Rovis, Nature 2016, 539, 272; f) J. Zhang, Y. Li, F. Zhang,
C. Hu, Y. Chen, Angew. Chem. Int. Ed. 2016, 55, 1872; Angew. Chem.
2016, 128, 1904; g) C. Wang, K. Harms, E. Meggers, Angew. Chem. Int.
Ed. 2016, 55, 13495; Angew. Chem. 2016, 128, 13693; h) E. A.
Wappes, K. M. Nakafuku, D. A. Nagib, J. Am. Chem. Soc. 2017, 139,
10204; i) W. Yuan, Z. Zhou, L. Gong, E. Meggers, Chem. Commun.
2017, 53, 8964; j) A. Hu, J.-J. Guo, H. Pan, H. Tang, Z. Gao, Z. Zuo, J.
Am. Chem. Soc. 2018, 140, 1612; k) Y. Xia, L. Wang, A. Studer, Angew.
Chem. Int. Ed. 2018, 57, 12940; Angew. Chem. 2018, 130, 13122; l) H.
Guan, S. Sun, Y. Mao, L. Chen, R. Lu, J. Huang, L. Liu, Angew. Chem.
Int. Ed. 2018, 57, 11413; Angew. Chem. 2018, 130, 11583; m) S. P.
Morcillo, E. M. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D.
Leonori, Angew. Chem. Int. Ed. 2018, 57, 12945; Angew. Chem. 2018,
130, 13127; n) X.-X. Wu, H. Zhang, N.-N. Tang, Z. Wu, D.-P. Wang, M.-
S. Ji, Y. Xu, M. Wang, C. Zhu, Nat. Commun. 2018, 9, 3343; o) Z. Li, Q.
Wang, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 13288; Angew. Chem.
2018, 130, 13472; p) D. Kurandina, D. Yadagiri, M. Rivas, A. Kavun, P.
Chuentragool, K. Hayama, V. Gevorgyan, J. Am. Chem. Soc. 2019, 141,
8104; q) S. Wu, X. Wu, D. Wang, C. Zhu, Angew. Chem. Int. Ed. 2019,
58, 1499; Angew. Chem. 2019, 131, 1513; r) K. Wu, L. Wang, S. Colón
Next, we sought to use density functional theory (DFT)
calculations at B2PLYP/def2-TZVPPD/SMD//M06-2X/def2-TZVP
level to understand the chemoselectivity for the formation of
seven-membered and six-membered rings (Scheme 7).[25] After
1,5-HAT and the addition to the alkene, a key intermediate INT-
C was formed. The seven-membered ring could be generated by
intramolecular cyclization of the 2a-INT-C for acrylonitrile 2a.
After proposing and calculating four different pathways, the
computational results suggested that the 2q-INT-C would
produce the six-membered ring via sequentially 1,4-HAT, 1,4-
HAT, 1,6-HAT and intramolecular cyclization for NH-maleimide
2q (see Scheme S4 in the Supporting Information for the
details).[26] The energy barriers of the annulation reactions of 2a
and 2q were calculated. The highest energy barrier (2a-TS14)
among the process to produce six-membered ring was 9.7
kcal/mol higher than that of 2a-TS1, suggesting the formation of
seven-membered ring from 2a was more favorable. On the other
side, for the substrate 2q, the energy of 2q-INT-D was slightly
higher (2.1 kcal/mol) than 2q-INT-C, while the energies of 2q-
INT-C’’ and 2q-INT-D’ were 4.7 and 10.1 kcal/mol lower than
2q-INT-C, respectively. Moreover, the energy barrier of 2q-TS1
was 0.9 kcal/mol higher than the highest energy barrier (2q-TS14)
among the process to produce six-membered ring. These results
implied that the reaction of 2q was favorable to form the six-
membered ring.
[8]
Conclusion
‐Rodríguez, G.-U. Flechsig, T. Wang, Angew. Chem. Int. Ed. 2019, 58,
1774; Angew. Chem. 2019, 131, 1788.
We have successfully exploited oximes as five-atom units for
the iminyl radical-triggered cascade 1,5-HAT/(5+2) or (5+1)
annulation reactions with various electron-deficient alkenes,
which allow for the rapid assembly of over 50 examples of
structurally new and interesting azepine and spiro-
tetrahydropyridine derivatives as potentially attractive privileged
scaffolds in drug discovery. The method exhibits broad substrate
[9]
For recent reviews, see: a) S. Z. Zard, Chem. Soc. Rev. 2008, 37,
1603; b) S. B. Höfling, M. R. Heinrich, Synthesis 2011, 173; c) T. Xiong,
Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069; d) J.-R. Chen, X.-Q. Hu,
L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044; e) H. Jiang, A.
Studer, CCS Chem. 2019, 1, 38.
5
This article is protected by copyright. All rights reserved.