anti CHH, allyl), 2.32 (0.45 H, d, J 12.0, anti CHH, allyl), 3.05
(0.45, H, d, J 6.9, syn CHH, allyl), 3.22 (0.55 H, d, J 13.2, anti
CHH, allyl), 3.24 (1.65 H, s, CH3), 3.30–3.34 (1 H, m, CHH, allyl),
3.53 (1.35 H, s, CH3), 4.31 (1 H, td, J 7.2, 2.4, syn CHH, allyl),
4.91–5.04 (0.45 H, m, central CH, allyl), 5.22–5.35 (0.55 H, m,
central CH, allyl), 6.65 (0.55 H, d, J 6.6, CHArom), 6.72 (0.45 H, d,
J 6.9, CHArom), 7.35 (1 H, dd, J 15.6, 9.0, CHArom), 7.45–7.59 (4 H,
m, CHArom), 8.17 (0.9 H, d, J 8.1, CHArom) and 8.39 (1.1 H, d, J 8.1,
CHArom); dC(75 MHz; CDCl3) 22.8, 51.3, 51.8, 71.2, 113.0, 113.0,
113.6, 114.0, 114.1, 114.8, 125.1, 125.3, 128.9, 128.9, 129.2, 129.4,
131.1, 140.1, 140.8, 141.1, 150.1 and 175.6; m/z (CI) 356.0403
(M+ - Cl, C16H16N3Pd requires 356.0379) and 210 (100%).
Acknowledgements
We thank the Spanish ‘Ministerio de Ciencia y Tecnolog´ıa’
(grants CTQ2007–61915 and CTQ2007-60244) and the Junta de
Andaluc´ıa (grant 2005/FQM-658) for financial support. J. I.-S.
thanks the Ministerio de Ciencia e Innovacio´n for a predoctoral
fellowship.
Notes and references
1 (a) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290; (b)
N-Heterocyclic Carbenes in Synthesis, ed. S. P. Nolan, Wiley-VCH,
2006; (c) N-Heterocyclic Carbenes in Transition Metal Catalysis, ed.
F. Glorius, Springer, Berlin, Heidelberg, New York, 2007; (d) E. A. B.
Kantchev, C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed.,
2007, 46, 2768; (e) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int.
Ed., 2008, 47, 3122.
Monocarbene palladium complex 18. From
7 (54 mg,
0.1 mmol), flash chromatography afforded 18 (51 mg, 75%) as
a white solid; dH(500 MHz; CDCl3) 1.83 (0.67 H, d, J 12.0, anti
CHH, allyl), 2.41 (0.33 H, d, J 11.5, anti CHH, allyl), 3.05 (0.41 H,
d, J 6.0 Hz, syn CHH, allyl), 3.29–3.33 (1.14 H, m, CHH, allyl),
3.51 (0.45 H, d, J 13.0, anti CHH, allyl), 4.43 (1 H, d, J 7.0, syn
CHH, allyl), 5.00–5.08 (0.41 H, m, central CH, allyl), 5.35–5.47
(0.59 H, m, central CH, allyl), 7.47–7.61 (5 H, m, CHArom), 7.69–
7.79 (3 H, m, CHArom), 8.22 (0.89 H, d, J 7.5, CHArom), 8.42 (1.11 H,
d, J 7.5, CHArom), 10.00 (0.56 H, d, J 8.5, CHArom) and 10.33 (0.44
H, d, J 8.5, CHArom); dC(125 MHz; CDCl3) 51.4, 51.6, 71.8, 72.0,
77.2, 112.6, 112.7, 114.3, 115.3, 119.2, 119.4, 123.9, 124.0, 124.7,
125.0, 127.2, 127.2, 128.9, 129.0, 129.1, 129.1, 129.3, 130.4, 130.5,
133.4, 133.6, 148.6 and 177.6; m/z (FAB) 387 (14, M - allyl), 237
(100), 173 (31), 153 (31) and 131 (69%).
2 G. C. Vougioukalakis and R. H. Grubbs, J. Am. Chem. Soc., 2005, 130,
2234.
3 (a) D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J. Melder,
K. Ebel and S. Brode, Angew. Chem., Int. Ed. Engl., 1995, 34, 1021;
(b) A. Fu¨rstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann,
R. Mynott, F. Stelzer and O. R. Thiel, Chem.–Eur. J., 2001, 7, 3236;
(c) Review: D. Enders and H. Gielen, J. Organomet. Chem., 2001, 617–
618, 70.
4 (a) E. Despagnet-Ayoub and R. H. Grubbs, J. Am. Chem. Soc.,
2004, 126, 10198; (b) E. Despagnet-Ayoub and R. H. Grubbs,
Organometallics, 2005, 24, 338.
5 (a) R. W. Alder, M. E. Blake, C. Bortolotti, S. Bufali, C. P. Butts,
E. Linehan, J. M. Oliva, A. G. Orpen and M. J. Quayle, Chem.
Commun., 1999, 241; (b) M. Mayr, K. Wurst, K.-H. Ongania and M. R.
Buchmeiser, Chem.–Eur. J., 2004, 10, 1256.
6 (a) R. Jazzar, H. Liang, B. Donnadieu and G. Bertrand, J. Organomet.
Chem., 2006, 691, 3201; (b) M. Iglesias, D. J. Beetstra, A. Stasch, P. N.
Horton, M. B. Hursthouse, S. J. Coles, K. J. Cavell, A. Dervisi and I. A.
Fallis, Organometallics, 2007, 26, 4800; (c) M. Iglesias, D. J. Beetstra,
J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse,
K. J. Cavell, A. Dervisi and I. A. Fallis, Organometallics, 2008, 27,
3279.
7 (a) V. Lavallo, Y. Canac, C. Pra¨sang, B. Donnadieu and G. Bertrand,
Angew. Chem., Int. Ed., 2005, 44, 5705; (b) V. Lavallo, Y. Canac, A.
DeHope, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2005,
44, 7236.
8 (a) S. Grundemann, A. Kovacevic, M. Albrecht, J. W. Faller and
R. H. Crabtree, J. Am. Chem. Soc., 2002, 124, 10473; (b) A. R.
Chianese, A. Kovacevic, B. M. Zeglis, J. W. Faller and R. H. Crabtree,
Organometallics, 2004, 23, 2461; (c) L. N. Appelhans, D. Zuccaccia, A.
Kovacevic, A. R. Chianese, J. R. Miecznikowski, A. Macchioni, E. Clot,
O. Eisenstein and R. H. Crabtree, J. Am. Chem. Soc., 2005, 127, 16299;
(d) L. Yang, A. Kru¨ger, A. Neels and M. Albrecht, Organometallics,
2008, 27, 3161; (e) G. Song, Y. Zhang and X. Li, Organometallics, 2008,
27, 1936; (f) Review: P. Arnold and S. Pearson, Coord. Chem. Rev., 2007,
251, 596.
Monocarbene palladium complex 19. From
8 (38 mg,
0.1 mmol), flash chromatography afforded 19 (15 mg, 16%) as
a white solid; dH(500 MHz; CDCl3) 1.88 (d, J 12.5, anti CHH,
allyl), 2.47–2.27 (m, anti CHH, allyl), 3.07 (0.43H, d, J 6.7, syn
CHH, allyl), 3.33–3.29 (1.14H, m, syn CHH + anti CHH, allyl),
3.51 (0.43H, d, J 13.0, anti CHH, allyl), 4.44 (1H, m, anti CHH,
allyl), 5.10–4.95 (0.43H, m, central CH, allyl), 5.44–5.34 (0.57H,
m, central CH, allyl), 8.54–87.36 (12H, m, CHArom), 10.07 (0.57H,
dd, J 8.2, J 0.9, CHArom) and 10.41 (0.43H, d, J 8.1, CHArom);
dC(125 MHz; CDCl3) 51.5, 51.6, 71.7, 72.0, 77.4, 114.4, 115.3,
119.3, 120.0, 120.1, 123.7, 123.9, 124.9, 125.1, 127.5, 129,0, 129,3,
129,5, 129.7, 131,8, 141,0, 141.1, 148.4 and 179.0.
Crystal structure determination of complex 19.
9 (a) J. S. Owen, J. A. Labinger and J. E. Bercaw, J. Am. Chem.
Soc., 2004, 126, 8247; (b) G. Song, Y. Zhang, Y. Su, W. Deng, K.
Han and X. Li, Organometallics, 2008, 27, 6193, and references cited
therein.
Crystal data. C23H18ClN3Pd, M = 478.25, monoclinic, space
˚
group P21/c (no. 14), a = 9.5846(6), b = 30.038(2), c = 7.0204(5) A,
◦
3
˚
b = 108.420(3) , V = 1917.6(2) A , T = 100(2) K, Z = 4, 15674
reflections measured, 3931 unique (Rint = 0.0739). The final wR(F2)
10 (a) F. E. Hahn, L. Wittenbecher, R. Boese and D. Bl
a¨ser, Chem.–
Eur. J., 1999, 5, 1931; (b) F. E. Hahn, L. Wittenbecher, D. Le Van and
R. Fro¨hlich, Angew. Chem., Int. Ed., 2000, 39, 541.
11 H. V. Huynh, N. Meier, T. Pape and F. E. Hahn, Organometallics, 2006,
25, 3012.
was 0.1274 (all data).
General procedure for Suzuki–Miyaura cross-coupling
12 (a) P. Bazinet, G. P. A. Yap and D. S. Richeson, J. Am. Chem. Soc.,
2003, 125, 13314; (b) P. Bazinet, T.-G. Ong, J. S. O’Brien, N. Lavoie, E.
Bell, G. P. A. Yap, I. Korobkov and D. S. Richeson, Organometallics,
2007, 26, 2885.
A solution of 7 (0.5 mol%, 0.002 mmol) in toluene (1 mL) was
added to a mixture of the aryl halide (0.4 mmol), phenyl boronic
acid (0.6 mmol) and K3PO4 (170 mg, 0.8 mmol). A solution of
Pd(OAc)2 (0.002 mmol) in toluene (1 mL) was then added and
the mixture was stirred until consumption of the starting halide
(TLC monitoring). The resulting residue was purified by flash
chromatography using hexane as eluent.
13 S. G
o´mez-Bujedo, M. Alcarazo, C. Pichon, E. Alvarez, R. Ferna´ndez
and J. M. Lassaletta, Chem. Commun., 2007, 1180.
14 (a) M. Alcarazo, S. J. Roseblade, A. R. Cowley, R. Ferna´ndez, J. M.
Brown and J. M. Lassaletta, J. Am. Chem. Soc., 2005, 127, 3290; (b) S. J.
´
Roseblade, A. Ros, D. Monge, M. Alcarazo, E. Alvarez, J. M. Lassaletta
and R. Ferna´ndez, Organometallics, 2007, 26, 2570.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 7113–7120 | 7119
©