Our hypothesis that the diphenylmethyl group delivered
the hydride was investigated using a deuterium labeling
experiment (Scheme 3). Deuterated alkynyl amine d-7 was
prepared and subjected to the standard reaction conditions.
The coupled N,O-ketal showed an 88% deuterium incorporation
at the hydroquinone C–H. This verifies that one of the two
reducing equivalents results from the conserved transfer of the
diphenylmethyl methine.15
D. Chowdary, J. Pawlak, G. L. Verdine and K. Nakanishi, Science,
1987, 235, 1204; (d) W. Szybalski and V. N. Iyer, Antibiotics I
Mechanism of Action, ed. D. Gottlieb and P. D. Shaw, Springer-
Verlag, New York, 1967, p. 211; (e) H. Kohn, N. Zein, X. Q. Lin,
J. -Q. Ding and K. M. Kadish, J. Am. Chem. Soc., 1987, 109, 1833;
(f) J. -C. Andrez, Beilstein J. Org. Chem., 2009, 5, 33.
3 Mitomycin
C syntheses: (a) T. Fukuyama, F. Nakatsubo,
A. J. Cocuzza and Y. Kishi, Tetrahedron Lett., 1977, 49, 4295;
(b) T. Fukuyama and L. Yang, J. Am. Chem. Soc., 1987, 109, 7881;
(c) T. Fukuyama and L. Yang, J. Am. Chem. Soc., 1989, 111, 8303.
4 Mitomycin K syntheses: (a) J. W. Benbow, G. K. Schulte and
S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1992, 31, 915;
(b) J. W. Benbow, K. F. McClure and S. J. Danishefsky, J. Am.
Chem. Soc., 1993, 115, 12305; (c) Z. Wang and L. S. Jimenez,
Tetrahedron Lett., 1996, 37, 6049.
5 Selected synthetic efforts towards mitomycin C: (a) F. E. Ziegler
and M. Y. Berlin, Tetrahedron Lett., 1998, 39, 2455;
(b) R. S. Coleman, F.-X. Felpin and W. Chen, J. Org. Chem.,
2004, 69, 7309; (c) K. J. Shaw, J. R. Luly and H. Rapoport, J. Org.
Chem., 1985, 50, 4515; (d) D. R. Bobeck, D. L. Warner and
E. Vedejs, J. Org. Chem., 2007, 72, 8506.
6 For reviews of structure–activity comparisons of mitomycin
analogues, see: (a) W. A. Remers, The Mitomycins in Anticancer
Agents from Natural Products, D. G. I. Kingston, G. M. Cragg and
D. J. Newman, ed. CRC Press LLC, Boca Raton, Fla, 2005, p. 475;
(b) W. T. Bradner, W. A. Remers and D. M. Vyas, Anticancer Res.,
1989, 9, 1095; (c) H. Arai, Y. Kanda, T. Ashizawa, M. Morimoto,
K. Gomi, M. Kono and M. Kasai, J. Med. Chem., 1994, 37, 1794;
(d) H. D. Beall and S. L. Winski, Front. Biosci., 2000, 5, D639.
7 A. L. Williams, J. M. Srinivasan and J. N. Johnston, Org. Lett.,
2006, 8, 6047.
The mechanism outlined in Scheme 4 for the formation of
11 is consistent with these observations. The initial amino-
mercuration of alkynyl amine 7 and subsequent enamine
addition to quinone 9 would form coupled intermediate 2b.
An E/Z isomerization would bring the pyrrolidine in close
proximity for the 1,6-hydride shift of the diphenylmethyl
methine, resulting in elimination of the bromide and sub-
sequent cyclization of the quinone oxygen onto the iminium
ion. A second hydride addition and tautomerization would
then give N,O-ketal 11.
The cascade that ensues after coupling of the two halves of
the mitomycin backbone was unexpected, but delivers an
advanced intermediate containing all but one of the required
carbons for mitomycin C. The oxidative ketalization provides
differential protection of the hydroquinone hydroxyls while
chemically differentiating the pyrrolidine and aziridine nitrogens.
Equally important is the maintenance of enamine nucleo-
philicity, a feature that will be used to install the final carbon.
Overall, convergency of approach and the Brønsted acid-
catalyzed aza-Darzens reaction of propargyl imine 4 combine
to deliver N,O-ketal 11 in 8 steps.
8 (a) J. C. Antilla and W. D. Wulff, J. Am. Chem. Soc., 1999, 121,
5099; (b) J. C. Antilla and W. D. Wulff, Angew. Chem., Int. Ed.,
2000, 39, 4518.
9 A. L. Williams and J. N. Johnston, J. Am. Chem. Soc., 2004, 126,
1612.
10 For a review of reports demonstrating the compatibility of
diazoalkanes with Brønsted acids, see: J. N. Johnston and
H. Muchalski, T. Troyer. Angew. Chem. Int. Ed., 2010, 49, 2290.
11 J. R. Hwu and P. S. Furth, J. Am. Chem. Soc., 1989, 111, 8834.
12 Aminomercuration lead references: (a) J. Barluenga, F. Aznar,
R. Liz and R. Rodes, J. Chem. Soc., Perkin Trans. 1, 1980, 2732;
(b) J. Barluenga, F. Aznar and R. Liz, Synthesis, 1984, 304;
(c) J. Barluenga, F. Aznar, R. Liz and M.-P. Cabal, Synthesis,
1986, 26, 960.
13 Quinone regioselectivity studies lead references: (a) A. L. Cox and
J. N. Johnston, Org. Lett., 2001, 3, 3695; (b) J. R. Luly and
H. Rapoport, J. Org. Chem., 1981, 46, 2745; (c) K. W. Stagliano,
Z. Lu, A. Emadi, J. S. Harwood and C. A. Harwood, J. Org.
Chem., 2004, 69, 5128; (d) T. Ling, E. Poupon, E. J. Rueden and
E. A. Theodorakis, Org. Lett., 2002, 4, 819; (e) T. Ling, E. Poupon,
E. J. Rueden, S. H. Kim and E. A. Theodorakis, J. Am. Chem.
Soc., 2002, 124, 12261.
Financial support provided by the NIH (GM 063557) is
gratefully acknowledged.
Notes and references
1 (a) T. Hata, R. Sano, A. Sugawara, K. Matsume, T. Shima and
T. Hoshi, J. Antibiot., 1956, 9, 141; (b) D. V. Lefemine, M. Dann,
F. Barbatschi, W. K. Hausmann, V. Zbinovsky, P. Monnikendam,
J. Adam and N. Bohonos, J. Am. Chem. Soc., 1962, 84, 3184;
(c) J. S. Webb, D. B. Cosulich, J. H. Mowat, J. B. Patrick,
R. W. Broschard, W. E. Meyer, R. P. Williams, C. F. Wolf,
W. Fulmor, C. Pidacks and J. E. Lancaster, J. Am. Chem. Soc.,
1962, 84, 3185; (d) A. Tulinsky and J. H. van den Hende, J. Am.
Chem. Soc., 1967, 89, 2905; (e) R. Yahashi and I. Matsubara,
J. Antibiot., 1976, 29, 104; (f) U. Hornemann and M. J. Heins,
J. Org. Chem., 1985, 50, 1301; (g) K. Shirahata and N. Hirayama,
J. Am. Chem. Soc., 1983, 105, 7100.
14 J. R. Luly and H. Rapoport, J. Am. Chem. Soc., 1983, 105, 2859.
15 A crossover experiment was not performed to determine whether
this transfer is strictly intramolecular.
2 (a) G. S. Kumar, R. Lipman, J. Cummings and M. Tomasz,
Biochemistry, 1997, 36, 14128; (b) A. C. Sartorelli, Biochem.
Pharmacol., 1986, 35, 67; (c) M. Tomasz, R. Lipman,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3975–3977 3977