Page 7 of 9
Journal of the American Chemical Society
Type Coupling Reactions: NiCl2(PPh3)2/PPh3/Zn/NaH/Toluene. J.
Org. Chem. 2001, 66, 2877–2880.
(12) Chen, W.-W.; Zhao, Q.; Xu, M.-H.; Lin, G.-Q. Nickel-Cata-
lyzed Asymmetric Ullmann Coupling for the Synthesis of Axially
Chiral Tetra-ortho-Substituted Biaryl Dials. Org. Lett. 2010, 12,
1072–1075.
2019, 52, 3309–3324. (d) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl,
B.; Kampf, C. J. Electrochemical Arylation Reaction. Chem. Rev.
2018, 118, 6706–6765. (e) Yan, M.; Kawamata, Y.; Baran, P. S.
Synthetic Organic Electrochemical Methods Since 2000: On the
Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319.
(17) (a) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S.
Site-Selective C–H Functionalization via Synergistic Use of Elec-
trochemistry and Transition Metal Catalysis. Acc. Chem. Res. 2020,
53, 3309–3324. (b) Siu, J. C.; Fu, N.; Lin, S. Catalyzing Electrosyn-
thesis: A Homogeneous Electrocatalytic Approach to Reaction
Discovery. Acc. Chem. Res. 2020, 53, 547–560. (c) Ackermann, L.
Metalla-electrocatalyzed C–H Activation by Earth-Abundant 3d
Metals and Beyond. Acc. Chem. Res. 2020, 53, 84–104.
1
2
3
4
5
6
7
8
(13) For selected examples on enantioselective BINOL synthesis
via oxidative phenolic coupling, see: (a) Tian J.-M. Wang, A.-F.;
Yang, J.-S.; Zhao, X.-J.; Tu, Y.-Q.; Zhang, S.-Y.; Chen, Z.-M. Cop-
per-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-
Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3’-Sub-
stituted C1-Symmetric BINOLs. Angew. Chem., Int. Ed. 2019, 58,
11023–11027. (b) Kang, H.; Herling, M. R.; Niederer, K. A.; Lee, Y.
E.; Reddy, P. V. G.; Dey, S.; Allen, S. E.; Sung, P.; Hewitt, K; Torru-
ellas, C.; Kim, G. J.; Kozlowski, M. C. Enantioselective Vanadium-
Catalyzed Oxidative Coupling: Development and Mechanistic In-
sights. J. Org. Chem. 2018, 83, 14362–14384. (c) Narute, S.; Parnes,
R.; Toste, F. D.; Pappo, D. Enantioselective Oxidative Homocou-
pling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron
Phosphate Complexes. J. Am. Chem. Soc. 2016, 138, 16553–16560.
(d) Alamsetti, S. K.; Poonguzhali, E.; Ganapathy, D.; Sekar, G. En-
antioselective Oxidative Coupling of 2-Naphthol Derivatives by
Copper-(R)-1,1'-Binaphthyl-2,2'-diamine-TEMPO Catalyst. Adv.
Synth. Catal. 2013, 355, 2803–2808. (e) Hewgley, J. B.; Stahl, S. S.;
Kozlowski, M. C. Mechanistic Study of Asymmetric Oxidative
Biaryl Coupling: Evidence for Self-Processing of the Copper Cata-
lyst to Achieve Control of Oxidase vs Oxygenase Activity. J. Am.
Chem. Soc. 2008, 130, 12232-12233. (f) Guo, Q.-X.; Wu, Z.-J.; Luo,
Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z.
Highly Enantioselective Oxidative Couplings of 2-Naphthols Cat-
alyzed by Chiral Bimetallic Oxovanadium Complexes with Either
Oxygen or Air as Oxidant. J. Am. Chem. Soc. 2007, 129, 13927–13938.
(g) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M.
C. Enantioselective Oxidative Biaryl Coupling Reactions Cata-
lyzed by 1,5-Diazadecalin Metal Complexes: Efficient Formation
of Chiral Functionalized BINOL Derivatives. J. Org. Chem. 2003,
68, 5500–5511. (h) Li, X.; Yang, J.; Kozlowski, M. C. Eantioselective
Oxidative Biaryl Coupling Reactions Catalyzed by 1,5-Diazade-
calin Metal Complexes. Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett.
2001, 3, 1137–1140. (i) Smrčina, M.; Poláková, J.; Vyskočil, Š.;
Kočovský, P. Synthesis of Enantiomerically Pure Binaphthyl De-
rivatives. Mechanism of the Enantioselective, Oxidative Coupling
of Naphthols and Designing a Catalytic Cycle. J. Org. Chem. 1993,
58, 4534–4538. (j) Enantioselective, Electrocatalytic Oxidative
Coupling of Naphtol, Naphtyl Ether and Phenanthrol on a
TEMPO-modified Graphite Felt Electrode in the Presence of (–)-
Sparteine (TEMPO = 2,2,6,6-tetramethylpeperidin-1-yloxyl). J.
Chem. Soc., Chem. Commun. 1994, 2535–2537.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) (a) Music, A.; Baumann, A. N.; Spieß, P.; Plantefol, A.; Jagau,
T. C.; Didier, D. Electrochemical Synthesis of Biaryls via Oxidative
intramolecular Coupling of Tetra(hetero)arylborates. J. Am. Chem.
Soc. 2020, 142, 4341–4348. (b) Gerleve, C.; Studer, A. Transition-
metal-free Oxidative Cross-Coupling of Tetraarylborates to Biar-
yls Using Organic Oxidants. Angew. Chem., Int. Ed.
DOI:10.1002/anie.202002595. (c) Röckl, J. L.; Schollmeyer, D.;
Franke, R.; Waldvogel, S. R. Dehydrogenative Anodic C–C Cou-
pling of Phenols Bearing Electron-Withdrawing Groups. Angew.
Chem., Int. Ed. 2020, 59, 315–319. (d) Kawamata, Y.; Vantourout, J.
C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q.; Qiao, W.; Barman, K.;
Edwards, M. A.; Garrido-Castro, A. F.; deGruyter, J. N.; Nakamura,
H.; Knouse, K. W.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.;
Garcia-Irizarry, C.; Sach, N.; White, H. S.; Neurock, M.; Minteer,
S. D.; Baran, P. S. Electrochemically Driven, Ni-catalyzed Aryl
Amination: Scope, Mechanism, and Applications. J. Am. Chem.
Soc. 2019, 141, 6392–6402. (e) Li, C.; Kawamata, Yu.; Nakamura, H.;
Vantourout, J. C.; Liu, Z.-Q.; Hou, Q.-L.; Bao, D.-H.; Starr, J. T.;
Chen, J.-S.; Yan, M.; Baran, P. S. Electrochemically Enabled
Nickel-Catalyzed Amination. Angew. Chem., Int. Ed. 2017, 56,
13088−13093.
(19) (a) Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. “Nickel-Catalyzed
Thiolation of Aryl Halides and Heteroaryl Halides via Electro-
chemistry” Angew. Chem., Int. Ed. 2019, 58, 5033–5037. (b) Jiao, K.-
J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S.
“Palladium-catalyzed reductive electrocarboxylation of allyl es-
ters with carbon dioxide” Org. Chem. Front. 2018, 5, 2244–2248.
(20) For selected examples for Ni-catalyzed electrochemical re-
ductive couplings of aryl halides, see: (a) Perkins, R. J.; Pedro, D.
J.; Hansen. E. C. Electrochemical Nickel Catalysis for sp2 ‑sp3
Cross-Electrophile Coupling Reactions of Unactivated Alkyl Hal-
ides. Org. Lett. 2017, 19, 3755–3758. (b) Sengmany, S.; Vitu-
Thiebaud, A.; Gall, E. L.; Condon, S.; Léonel, E.; Thobie-Gautier,
C.; Pipelier, M.; Lebreton, J.; Dubreuil, D. An Electrochemical
Nickel-Catalyzed Arylation of 3‑Amino-6-Chloropyridazines. J.
Org. Chem. 2013, 78, 370–379. (c) de França, K. W. R.; Navarro, M.;
Léonel, É.; Durandetti, M.; Nédélec, J.-Y. Electrochemical Homo-
coupling of 2-Bromomethylpyridines Catalyzed by Nickel Com-
plexes. J. Org. Chem. 2002, 67, 1838–1842. (d) Gosmini, C.; Lasry,
S.; Nedelec, J.-Y.; Périchon, J. Electrochemical cross-coupling be-
tween 2-halopyridines and aryl or heteroaryl halides catalyzed by
nickel-2,2’-bipyridine complexes. Tetrahedron 1998, 54, 1289–1298.
(e) Nédélec, J.-Y.; Périchon, J.; Troupel, M. Organic Electroreduc-
tive Coupling Reactions Using Transition Metal Complexes as
Catalysts. Top. Curr. Chem. 1997, 185, 141–173.
(14) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete
Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted
Acid and Metal Catalysis: History and Classification by Mode of
Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and
Metal Phosphates. Chem. Rev. 2014, 114, 9047–9153.
(15) The sole example for enantioselective oxidative coupling of
2-naphthols bearing 3-aryl substitution, see: Egami, H.; Katsuki,
T. Iron-Catalyzed Asymmetric Aerobic Oxidation: Oxidative Cou-
pling of 2-Naphthols. J. Am. Chem. Soc. 2009, 131, 6082–6083.
(16) For selected reviews on organic electrochemistry, see: (a)
Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.;
Peters, B. K.; Kawamata, Y. Baran, P. S. A Survival Guide for the
“Electro-curious”. Acc. Chem. Res. 2020, 53, 72–83. (b) Röckl, J. L.;
Pollok, D.; Franke, R. Waldvogel, S. R. A Decade of Electrochem-
ical Dehydrogenative C,C-Coupling of Aryls. Acc. Chem. Res. 2020,
53, 45–61. (c) Xiong, P.; Xu, H.-C. Chemistry with Electrochemi-
cally Generated N-Centered Radicals. Acc. Chem. Res. 2019, 52,
3339–3350. (b) Yuan, Y. Lei, A. Electrochemical Oxidative Cross-
Coupling with Hydrogen Evolution Reactions. Acc. Chem. Res.
(21) For selected reviews on electrochemical enantioselective
reactions, see: (a) Yamamoto, K.; Kuriyama, M.; Onomura, O.
Anodic Oxidation for the stereoselective Synthsis of Heterocycles.
Acc. Chem. Res. 2020, 53, 105–120. (b) Ghosh, M.; Shinde, V. S.;
Rueping, M.
A review of asymmetric synthetic organic
electrochemistry and electrocatalysis: concepts, applicatioins,
recent developments and future directions. Beilstein J. Org. Chem.
2019, 15, 2710–2746. (c) Lin, Q.; Li, L.; Luo, S. Asymmetric
ACS Paragon Plus Environment