2978
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 66, NO. 7, JULY 2019
[6] C.-C. Lee and Y.-Y. Liou, “Dependent analyses of multilayered mater-
[21] B. S. Na et al., “Ingazno-based stretchable ferroelectric memory tran-
sistor using patterned polyimide/polydimethylsiloxane hybrid substrate,”
J. Nanosci. Nanotechnol., vol. 16, no. 10, pp. 10280–10283, Oct. 2016.
[22] S. Y. Hong et al., “Stretchable active matrix temperature sensor array of
polyaniline nanofibers for electronic skin,” Adv. Mater., vol. 28, no. 5,
ial/geometrical characteristics on the mechanical reliability of flexible
display devices,” IEEE Trans. Device Mater. Rel., vol. 18, no. 4,
[7] N. Münzenrieder et al., “Stretchable and conformable oxide thin-
film electronics,” Adv. Electron. Mater., vol. 1, no. 3, Mar. 2015,
[23] S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. I. Suo,
“Stiff subcircuit islands of diamondlike carbon for stretchable elec-
tronics,” J. Appl. Phys., vol. 100, no. 1, Apr. 2006, Art. no. 014913.
[24] A. Romeo and S. P. P. Lacour, “Stretchable metal oxide thin film
transistors on engineered substrate for electronic skin applications,”
in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
[25] B. K. Sharma et al., “Load-controlled roll transfer of oxide transis-
tors for stretchable electronics,” Adv. Funct. Mater., vol. 23, no. 16,
[26] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor
thin-film transistors: A review of recent advances,” Adv. Mater., vol. 24,
[27] S. Wagner and S. Bauer, “Materials for stretchable electronics,” MRS
[28] N. Lu, J. Yoon, and Z. Suo, “Delamination of stiff islands patterned on
stretchable substrates,” Int. J. Mater. Res., vol. 98, no. 8, pp. 717–722,
[8] T. Sekitani and T. Someya, “Stretchable organic integrated circuits for
large-area electronic skin surfaces,” MRS Bull., vol. 37, pp. 236–245,
[9] B. K. Sharma and J.-H. Ahn, “Flexible and stretchable oxide electron-
ics,” Adv. Electron. Mater., vol. 2, no. 8, Aug. 2016, Art. no. 1600105.
[10] S. Wang et al., “Skin electronics from scalable fabrication of an
intrinsically stretchable transistor array,” Nature, vol. 555, no. 7694,
[11] N. Naserifar, P. R. LeDuc, and G. K. Fedder, “Material gradi-
ents in stretchable substrates toward integrated electronic function-
ality,” Adv. Mater., vol. 28, no. 18, pp. 3584–3591, May 2016.
[12] M.-J. Park et al., “Improvements in the bending performance and
bias stability of flexible InGaZnO thin film transistors and optimum
barrier structures for plastic poly(ethylene naphthalate) substrates,”
J. Mater. Chem. C, vol. 3, no. 18, pp. 4779–4786, Apr. 2015.
[13] T. Q. Trung and N.-E. Lee, “Materials and devices for transparent
stretchable electronics,” J. Mater. Chem. C, vol. 5, no. 9, pp. 2202–2222,
[14] D.-H. Kim et al., “Stretchable and foldable silicon integrated cir-
cuits,” Science, vol. 320, no. 5875, pp. 507–511, Apr. 2008,
[15] S. Wang, Y. Huang, and J. A. Rogers, “Mechanical designs for inor-
ganic stretchable circuits in soft electronics,” IEEE Trans. Compon.,
Packag., Manuf. Technol., vol. 5, no. 9, pp. 1201–1218, Sep. 2015.
[29] J. Yoon, S. Y. Hong, Y. Lim, S.-J. Lee, G. Zi, and J. S. Ha,
“Design and fabrication of novel stretchable device arrays on
a
deformable polymer substrate with embedded liquid-metal intercon-
nections,” Adv. Mater., vol. 26, no. 38, pp. 6580–6586, Oct. 2014.
[30] S. Gandla, H. Gupta, A. R. Pininti, A. Tewari, and D. Gupta, “Highly
elastic polymer substrates with tunable mechanical properties for stretch-
able electronic,” RSC Adv., vol. 6, no. 109, pp. 107793–107799,
[31] X. Li, D. Geng, M. Mativenga, and J. Jang, “High-speed dual-
gate a-IGZO TFT-based circuits with top-gate offset structure,” IEEE
Electron Device Lett., vol. 35, no. 4, pp. 461–463, Apr. 2014.
[32] D. Geng, Y. F. Chen, M. Mativenga, and J. Jang, “30μm-pitch oxide
TFT-based gate driver design for small-size, high-resolution, and narrow-
bezel displays,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 805–807,
[33] R. M. Erb et al., “Locally reinforced polymer-based composites
for elastic electronics,” ACS Appl. Mater. Interfaces, vol. 4, no. 6,
pp. 2860–2864, Jun. 2012.
[34] N. Matsuhisa et al., “Printable elastic conductors with a high conductiv-
ity for electronic textile applications,” Nature Commun., vol. 6, p. 7461,
[35] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya,
“A rubberlike stretchable active matrix using elastic conductors,” Sci-
ence, vol. 321, no. 5895, pp. 1468–1472, Sep. 2008.
[36] G. Li, X. Wu, and D.-W. Lee, “Selectively plated stretchable liquid metal
wires for transparent electronics,” Sens. Actuators B, Chem., vol. 221,
[16] G. Cantarella et al., “Buckled thin-film transistors and cir-
cuits on soft elastomers for stretchable electronics,” ACS Appl.
Mater. Interfaces, vol. 9, no. 34, pp. 28750–28757, Aug. 2017.
[17] C. W. Park, J. B. Koo, C.-S. Hwang, H. Park, S. G. Im, and
S.-Y. Lee, “Stretchable active matrix of oxide thin-film transistors with
monolithic liquid metal interconnects,” Appl. Phys. Express, vol. 11,
[18] D. Son et al., “Stretchable carbon nanotube charge-trap floating-gate
memory and logic devices for wearable electronics,” ACS Nano, vol. 9,
[19] I. M. Graz, D. P. J. Cotton, A. Robinson, and S. P. Lacour, “Silicone
substrate with in situ strain relief for stretchable thin-film transis-
tors,” Appl. Phys. Lett., vol. 98, no. 12, Mar. 2011, Art. no. 124101.
[20] S.-W. Jung, J. B. Koo, C. W. Park, B. S. Na, J.-Y. Oh, and S. S. Lee,
“Fabrication of stretchable organic-inorganic hybrid thin-film transistors
on Polyimide stiff-island structures,” J. Nanosci. Nanotechnol., vol. 15,