7400
P. H. G. Zarbin et al. / Tetrahedron Letters 45 (2004) 7399–7400
N
n-BuLi, THF
O
-78 oC
(3a)
N
O
O
H+, MeOH
I ,PPh
O
O
H
2
3
H
H
O
OH
O
O
O
I
imidazole, ether
(6)
(7)
(8)
N
H
Ref. 15
HO
O
O
O
O
(9)
(2)
Scheme 3. Formal synthesis of lactone (2).
1999, 10, 1895; (d) Ramachandran, P. V.; Krzeminski, M.
P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron: Asym-
metry 1999, 10, 11; (e) Pansare, S. V.; Jain, R. P.; Ravi, R.
G. Tetrahedron: Asymmetry 1999, 10, 3103; (f) Upadhya,
T. T.; Gurunath, S.; Sudalai, A. Tetrahedron: Asymmetry
1999, 10, 2899.
(3) with (S)-(4) afforded compound (5) in 92% isolated
yield,7 which was hydrolyzed and cyclized in acidic
media (Ôone-potÕ), to furnish compound (1) in 85% yield
as a mixture of stereoisomers (1a) and (1b). Similarly,
isomers (1c) and (1d) were synthesized in 87% yield
using iodide (R)-(4) (Scheme 2). Mixtures of diastereo-
isomers were obtained in a ratio of 70:30 (1a/b or 1c/d)
2. (a) Pirkle, W. P.; Adams, P. E. J. Org. Chem. 1979, 44(13),
2169; (b) Bernardi, R.; Ghiringhelli, D. Gazz. Chim. Tal.
1992, 122, 395.
1
as determined by GC and H NMR analysis.8
3. (a) Mori, K. Agric. Biol. Chem. 1976, 40, 1617; (b) Kaiser,
R.; Lamparsky, D. Tetrahedron Lett. 1976, 17, 1659; (c)
Cavill, G. W. K.; Clark, D. V.; Whitefield, F. B. Aust. J.
Chem. 1968, 21, 2819.
4. Weeler, J. W.; Evans, S. L.; Blum, M. S.; Velthius, H. H.
V.; Camargo, J. M. F. Tetrahedron Lett. 1976, 45, 4029.
5. Ito, Y.; Sugimoto, A.; Kakuda, T.; Kubota, K. Agric.
Food Chem. 2002, 50(17), 4878.
Optimal yields (>90%) were obtained when compound
(5) was not isolated, but rather hydrolyzed and cyclized
straight from the alkylation step. Methods for the sepa-
ration of diastereoisomers are largely described in the
literature.9
A slightly different approach was used to synthesize
(4R,5Z)-5-tetradecen-4-olide (2). In this case, (R)-4-
hydroxymethyl-2,2-dimethyl-1,3-dioxolane (6) was
employed as a chiral element. Iodide (7) was obtained
from commercial (6) in 65% yield.10 The lithium anion
was generated from 2,4,4-trimethyl-2-oxazoline (3a)
and alkylated in situ with iodide (7), yielding (8) in
85%.11 ÔOne-potÕ hydrolysis followed by cyclization
under acidic conditions provided the known hydroxy
lactone (9) ([a]D À31.0 (c 0.4, EtOH); lit.12 [a]D
À33 2 (c 2.9, EtOH)) in 60% yield,13 which can be
employed in the syntheses of chiral pheromone lactones
like (2) and others14,15 (Scheme 3).
6. Zarbin, P. H. G.; Oliveira, A. R. M.; Delay, C. E.
Tetrahedron Lett. 2003, 44, 6849.
7. Selected spectroscopic data for compound (5). H NMR
1
(400MHz, CDCl3): d 1.2 (d, J = 6.8Hz, 6H), 1.3 (s, 3H),
1.4–1.9 (m, 4H), 2.37–2.5 (m, 1H), 3.72–3.82 (m, 1H), 3.9
(s, 2H); 13C NMR (100MHz, CDCl3): d 17.74, 18.18,
23.33, 23.53, 28.12, 28.29, 29.84, 29.89, 33.28, 33.43, 36.50,
36.93, 66.56, 66.95, 67.33, 78.80, 78.85, 169.68. IR (mmax
film, cmÀ1) 3469, 2969, 2930, 1659. MS m/z (%) 200
(M++1, 17), 184 (12), 166 (21), 140 (48), 127 (100), 112
(32), 98 (21).
8. Spectroscopic data for compounds 1a/b or 1c/d are in
agreement with data reported by Jacobs, H. K.; Mueller,
B. H.; Gopalan, A. S. Tetrahedron 1992, 48, 8891.
9. Tsunoi, S.; Ryu, I.; Sonoda, N. J. Am. Chem. Soc. 1994,
116, 5473.
In conclusion, we have explored the versatility of oxaz-
oline derivatives in the synthesis of five and six-mem-
bered ring lactones. The examples given here
demonstrate a useful application of this methodology.
10. Millar, J. G.; Underhill, E. W. J. Org. Chem. 1986, 51,
4726.
11. Selected spectroscopic data for compound (8). H NMR
1
(80MHz): d 1.14 (s, 6H), 1.34 (s, 3H), 1.39 (s, 3H), 1.68–
2.00 (m, 2H), 2.27–2.44 (m, 2H), 3.52–3.63 (m, 2H), 3.96
(s, 2H), 4.03–4.22 (m, 1H).
References and notes
12. Takle, A.; Kocienski, P. Tetrahedron 1990, 46, 4503.
13. Mann, J.; Partlett, N. K.; Thomas, A. J. Chem. Res. S
1987(11), 369.
14. Zhdankina, G. M.; Serebryakov, E. P. B. Acad. Sci. USSR
CH+ 1985, 34, 2414.
1. (a) Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C.
Tetrahedron Lett. 2000, 41, 583; (b) Bertus, P.; Ratovelo-
manana-Vidal, V.; Genet, J. P.; Touati, A. R.; Homri, T.;
Hassine, B. B. Tetrahedron: Asymmetry 1999, 10, 1369; (c)
Wang, G.; Hollingsworth, R. I. Tetrahedron: Asymmetry
15. Kang, S.-K.; Shin, D.-S.; Lee, J.-O.; Goh, H.-G. Bull.
Korean Chem. Soc. 1986, 7, 444.