References
1
D. M. Burland, R. D. Miller and C. W. Walsh, Chem. Rev., 1994,
94, 31.
(a) D. Chemla and J. Zyss, Nonlinear Optical Properties of Organic
Materials and Crystals, Academic Press, Orlando, FL, Vol. I and
II, 1994; (b) P. N. Prasad and D. Williams, Nonlinear Optical
Effects in Molecules and Polymers, John Wiley and Sons, New
York, 1991.
2
3
4
(a) T. J. Marks and M. A. Ratner, Angew. Chem., Int. Ed. Engl.,
1995, 34, 155; (b) D. J. Williams, Angew. Chem., Int. Ed. Engl.,
1984, 23, 690; (c) B. Kippelen and N. Peyghambarian, Chem. Ind.
(London), 1995, 917.
(a) G. H. Wagmiere, Linear and Nonlinear Optical Properties of
Molecules, VCH, Weinheim, 1993; (b) H. S. Nalwa and S. Miyata
(Eds.), Nonlinear Optics of Organic Molecules and Polymers, CRC
Press, New York, 1997.
Fig. 3 Variation of SH signal intensity with temperature and time of
5d 1, at 100 °C; 2, at 200 °C.
5
6
(a) K. J. Drost, A. K.-Y. Jen and V. P. Rao, CHEMTECH, 1995,
16; (b) S. R. Marder, B. Kippelen, A. K.-Y. Jen and
N. Peyghambarian, Nature, 1997, 388, 845.
B. Kippelen, R. Meyers, N. Peyghambarian and S. R. Marder,
J. Am. Chem. Soc., 1997, 119, 4559.
R. Dagani, Chem. Eng. News, 1996, 22.
S. K. Asha, P. C. Ray and S. Ramakrishnan, Polym. Bull., 1997,
39, 481.
A. J. Heeger and D. R. Ulrich (Eds.), Nonlinear Optical Properties
of Polymers, North Holland Press, New York, 1988.
signal could be correlated to the glass transition temperature
(T ) of the samples.29 Polyesters 5g and 6g possessed the
g
7
8
lowest T values. They also did not contain isosorbide units.
g
It could therefore be assumed that the presence of isosorbide
units was essential in stabilizing the SHG ability at high
temperature. The variation of temporal stability of the SH
signal with temperature is presented in Fig. 3.
9
10 J. V. Selinger and R. L. B. Selinger, Phys. Rev. Lett., 1996, 76, 58.
11 L. Yu, Y. Chen, W. K. Chan and Z. Peng, Appl. Phys. Lett., 1994,
64, 2489.
12 L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, H. Ziari,
H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen and
K. J. Shea, Chem. Mater., 1995, 7, 1060.
13 (a) D. Bahulayan, V. Thomas and K. Sreekumar, Proc. SPIE,
Smart Materials, Structures and MEMS, 1998, 3321, 413;
(b) K. A. Maniram and K. Sreekumar, Proc. SPIE, Smart
Materials, Structures and MEMS, 1998, 3321, 67.
14 S. R. Marder, J. E. Sohn and G. D. Stucky (Eds.), Materials for
Nonlinear Optics, Chemical Perspectives, ACS Symp. Ser. 455,
American Chemical Society, Washington, DC, 1991.
15 R. D. Kamien and D. R. Nelson, Phys. Rev. Lett., 1995, 74, 2499.
16 S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
17 J. T. Scanlan, J. Am. Chem. Soc., 1935, 57, 890.
18 C. P. Joshua and P. K. Ramdas, Synthesis, 1974, 573; Tetrahedron
Lett., 1974, 4359.
19 J. M. Aducci, F. Nie and R. W. Lenz, ACS Polym. Prep., 1990,
31, 63.
20 H. R. Kricheldorff and N. Probst, Macromol. Rapid Commun.,
1995, 16, 231.
21 H. R. Kricheldorff and N. Probst, High Perform. Polym., 1995,
7, 469.
22 S. Kumar and D. C. Neckers, Chem. Rev., 1989, 89, 17.
23 L. Lestel, G. Galli, M. Laus and E. Chiellini, Polym. Bull., 1994,
32, 669.
Conclusions
A series of polyesters containing an azomesogenic group and
a chiral building block in the main chain has been prepared
and characterized. They exhibited good thermal properties,
have high T values. Some of the dynamic mechanical trans-
g
itions were peculiar; additional directional order as a result of
the presence of the azomesogenic group and macroscopic
chirality resulted in an unusual increase in storage modulus
(G∞) values at high temperatures. All the polyesters showed
moderately good SHG capability. One could have expected a
dramatic enhancement in SHG ability for the polyesters where
there was a cumulative influence of the directional property
of the azomesogenic groups and the prevailing chiral order of
the polymer chains. But the results were not encouraging.
There may be loss of macroscopic chirality due to some
unforeseen reasons, probably due to steric compulsions. The
polymer chains characterized by helical structures are noncen-
trosymmetric at the molecular level. But in randomly oriented
polymer films obtained by solvent evaporation, noncentrosym-
metry may be lost. Alignment of the molecular helices by
application of an electric field across the solution with simul-
taneous evaporation of the solvent could give high SHG
activity. Poling the polymer films at temperatures above the
glass transition temperature can induce macroscopic chirality
and the resulting directional order can be locked. Better results
may be obtained by shifting to the Maker–Fringe or HRS
methods. Measurement of the SH signal by the thin film
technique proved to be promising because of the added
organizational order induced by the Teflon substrate. The
temperature stability of the SH signal was also significantly
higher.
24 M. S. Paley, D. S. Frazier, S. P. McManus, S. E. Zutaut and
M. Sanghadasa, Chem. Mater., 1993, 5, 1641.
25 M. S. Paley, J. M. Harris, H. Losser, J. C. Baumert,
G. C. Bjorklund, D. Jundt and R. J. Tweig, J. Org. Chem., 1989,
54, 3774.
26 J. C. Wittman and P. Smith, Nature, 1991, 352, 414.
27 (a) Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono
and T. Ikeda, Macromolecules, 1998, 31, 349, 355; (b) D. Y. Kim,
L. Li, X. L. Jiang, V. Shivshankar and S. K. Tripathy,
Macromolecules, 1995, 28, 8835.
28 M. Kauranen, T. Verbiest, J. J. Maki and A. Persoons, J. Chem.
Phys., 1994, 101, 8193.
29 D. Yu, A. Gharavi and L. Yu, Appl. Phys. Lett., 1995, 66, 1050.
Acknowledgement
Paper 9/00567F
The authors sincerely thank Professor C. P. Joshua for the
inspiration he has rendered them to pursue research in polymer
photochemistry.
J. Mater. Chem., 1999, 9, 1425–1429
1429