Several control experiments were performed to investigate the reaction pathway (Scheme 5). Aniline 10 was obtained in 35% yield
when only nitrobenzene 1a was employed under the optimized reaction conditions (eq. 1). The reaction of 2a and N-
phenylhydroxylamine resulted in a poor yield of 3a, while no reaction occurred in the reaction of 2a and 10 (eq. 2 and 3). In the case of
4-methylbenzene sulfonyl chloride, both 10 and N-phenylhydroxylamine reacted to yield product 3a with moderate yields (eq. 4 and 5).
4-Methylbenzene sulfonyl chloride could also be reduced to 2a under the same conditions (eq. 6). According to these results, it can be
concluded that (1) both nitrobenzene and 4-methylbenzene sulfonyl chloride could be reduced to aniline and 2a, respectively, under the
optimized conditions; (2) aniline and N-phenylhydroxylamine are not intermediates in the reaction of 1a and 2a; (3) aniline and N-
phenylhydroxylamine may be intermediates in the reaction of 1a and 4-methylbenzene sulfonyl chloride.
Based on the results of previous reports and control experiments,6,14 the Fe(III) in the secondary building units (SBU) of MIL-101(Fe)
should be the active site for the reaction (Fig. 2). All three iron sites in SBU may be active sites for the reaction. The two iron sites
coordinated with water can activate nitroarenes by coordination. The iron site bonded with chloride can activate both nitroarenes and
sodium arylsulfinates via coordination and electrostatic interactions. Compared with iron salts, the Fe(III) in MIL-101(Fe) is more
stable and has stronger Lewis acidity owing to the SBU structure.
A proposed mechanism is illustrated in Figure 2 according to the literature and experimental results.6 First, the iron arylsulfinate A
(or A’) is formed through electrostatic interactions between Fe(III) and the arylsulfinate, in which the sulfur atom is more nucleophilic
than it is in 2 owing to weaker electrostatic interactions between Fe(III) and the arylsulfinate. Meanwhile, the nitro group of 1 can be
activated by coordination and electrostatic interactions with iron to form C, in which the nitrogen atom is more electrophilic than it is in
1. Then, complexation and nucleophilic substitution of A’ to the nitrogen atom of C results in intermediate B, which is attacked by
2-
bisulfite to afford intermediate D, releasing Fe(III) and SO4 . The final product 3 is formed following the reduction of intermediate D
by bisulfite.
3. Conclusions
In summary, a MIL-101(Fe)-catalyzed coupling between nitroarenes and sodium arylsulfinates or arylsulfonyl chlorides has been
developed for the synthesis of N-arylsulfonamides. The protocol processes several advantages including the use of a recyclable catalytic
system, high chemoselectivity and high yields.
4. Acknowledgements
We gratefully acknowledge the Chinese Postdoctoral Science Foundation (2015M571761, 2016T90465). We thank Lan Yi at Test
Center Nanjing University of Science and Technology for the help in obtaining the NMR data.
Supplementary Material
References and notes
1. (a) Drews J. Science. 2000;287:960-1964;
2.
3.
(b) Scozzafava A, Owa T, Mastrolorenzo A, Supuran C. Curr Med Chem. 2003;10:25-953;
(c) Woo, SY, Kim JH, Moon MK, Han SH, Yeon SK, Choi JW, Jang BK, Song HJ, Kang YG, Kim JW, Lee J, Kim DJ, Hwang O, Park KD. J Med Chem.
2014;57:1473-1487.
4. (a) El-Faham A, Albericio F. Chem Rev. 2011;111:6557-6602;
5. (b) Valeur E, Bradley M. Chem Soc Rev. 2009;38:606-631;
6. (a) Wilden J, Geldeard L, Lee C, Judd D, Caddic S. Chem Commun. 2007;1074-1076;
7.
8.
9.
(b) Tang X, Huang L, Qi C, Wu X, Wu W, Jiang H. Chem Commun. 2013;49:6102-6104;
(c) DeBergh J, Niljianskul N, Buchwald S. J Am Chem Soc. 2013;135:10638-10641;
(d) Caddick S, Wilden J, Judd D. J Am Chem Soc. 2004;126:1024-1025; (e) Yang K, Ke M, Lin Y, Song K. Green Chem. 2015;17:1395-1399;
10. (f) Pan X, Gao J, Liu J, Lai J, Jiang H, Yuan G. Green Chem. 2015;17:1400-1403;
11. (g) Sarkar D, Ghosh MK, Rout N. Tetrahedron Lett. 2018;59:2360-2364;
12. (h) Parumala SKR, Peddinti RK. Tetrahedron Lett. 2016;57:1232-1235.
13. Skipper P, Kim M, Sun H, Wogan G, Tannenbaum S. Carcinogenesis. 2010;31:50-58.
14. For selected examples, see
15. (a) Baffoe J, Hoe M, Toure B. Org Lett. 2010;12:1532-1535;
16. (b) Rosen B, Ruble J, Beauchamp T, Navarro A. Org Lett. 2011;13:2564-2567;
17. (c) Shi F, Tse M, Zhou S, Pohl M, Radnik J, Hübner S, Jähnisch K, Brückner A, Beller M. J Am Chem Soc. 2009;131:1775-1779;
18. (d) Shi F, Kin T, Cui X, Dirk G, Dirk M, Kerstin T, Youquan D, Matthias B. Angew Chem Int Ed. 2009;48:5912-5915;
19. (e) Qu P, Sun C, Ma J, Li F. Adv Synth Catal. 2014;356:447-459;
20. (f) Shekhar S, Dunn T, Kotecki B, Montavon D, Cullen S. J Org Chem. 2011;76:4552-4563;
21. (g) Suarez J, Chiara J. Chem Commun. 2013;49:9194-9196;
22. (h) Lu H, Jiang H, Hu Y, Wojtas L, Zhang X. Chem Sci. 2011;2:2361-2366.
23. Zhang W, Xie J, Rao B, Luo M. J Org Chem. 2015;80:3504-3511.
24. Zhao F, Li B, Huang H, Deng G. RSC Adv. 2016;6:13010-13013.
25. Jiang J, Zeng S, Chen D, Cheng C, Deng W, Xiang J. Org Biomol Chem. 2018;doi: 10.1039/c8ob01172a.
26. (a) Anastas P, Warner J. Green Chem. Theory and Practice, Oxford University Press, Oxford, UK, 1998;
27. (b) Anastas P, Williamson T. Green Chem. Frontiers in Benign Chemical Synthesis and Process, Oxford University of Press, Oxford, UK, 1998; (c) Jessop
P. Green Chem. 2011;13:1391-1398.
28. (a) Lu G, Cai C, Chen F, Ye R, Zhou B. ACS Sustain Chem Eng. 2016;4:1804-1809;
29. (b) Lin Y, Lu G, Cai C, Yi W. Org Lett. 2015;17:3310-3313;
30. (c) Lin Y, Lu G, Wang G, Yi W. Adv Synth Catal. 2016;358:4100-4105; (d) Lin Y, Lu G, Wang G, Yi W. J Org Chem. 2017;82:382-389.
31. (a) Wang D, Wang M, Li Z. ACS Catal. 2015;5:6852-6857;
32. (b) Yang X, Yuan S, Zou L, Drake H, Zhang Y, Qin J, Alsalme A, Zhou H. Angew Chem Int Ed Engl. 2018;57:3927-3932;
33. (c) Dhakshinamoorthy A, Alvaro M, Garcia H. Chem Commun. 2010;46:6476-6478.
34. (a) Wang D, Huang R, Liu W, Sun D, Li Z. ACS Catal. 2014;4:4254-4260;
35. (b) Vermoortele F, Bueken B, LeBars G, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van Speybroeck V,
Kirschhock C, De Vos D. J Am Chem Soc. 2013;135:1465-11468;
36. (c) Deenadayalan M, Sharma M, Verma P, Nagaraja C. Inorg Chem. 2016;55:5320-5327;
37. (d) Chen J, Zhang Z, Bao Z, Su Y, Xing H, Yang Q, Ren Q. ACS Appl Mater Inter. 2017;9:9772-9777.